ML Anthology
Authors
Search
About
Baraniuk, Richard
46 publications
ICML
2025
Mitigating Over-Exploration in Latent Space Optimization Using Les
Omer Ronen
,
Ahmed Imtiaz Humayun
,
Richard Baraniuk
,
Randall Balestriero
,
Bin Yu
TMLR
2025
SaFARi: State-Space Models for Frame-Agnostic Representation
Hossein Babaei
,
Mel White
,
Sina Alemohammad
,
Richard Baraniuk
ICLRW
2025
Self-Improving Diffusion Models with Synthetic Data
Sina Alemohammad
,
Ahmed Imtiaz Humayun
,
Shruti Agarwal
,
John Collomosse
,
Richard Baraniuk
NeurIPS
2025
WaLRUS: Wavelets for Long Range Representation Using State Space Methods
Hossein Babaei
,
Mel White
,
Sina Alemohammad
,
Richard Baraniuk
TMLR
2024
Boomerang: Local Sampling on Image Manifolds Using Diffusion Models
Lorenzo Luzi
,
Paul M Mayer
,
Josue Casco-Rodriguez
,
Ali Siahkoohi
,
Richard Baraniuk
ICML
2024
Deep Networks Always Grok and Here Is Why
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
ICMLW
2024
Deep Networks Always Grok and Here Is Why
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
ICMLW
2024
Grokking and the Geometry of Circuit Formation
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
ICLR
2024
Implicit Neural Representations and the Algebra of Complex Wavelets
T Mitchell Roddenberry
,
Vishwanath Saragadam
,
Maarten V. de Hoop
,
Richard Baraniuk
ICML
2024
PIDformer: Transformer Meets Control Theory
Tam Minh Nguyen
,
Cesar A Uribe
,
Tan Minh Nguyen
,
Richard Baraniuk
NeurIPSW
2024
RNN Replay: Leakage and Underdamped Dynamics
Josue Casco-Rodriguez
,
Richard Baraniuk
ICMLW
2024
ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks
Omer Ronen
,
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
,
Bin Yu
ICLR
2024
Self-Consuming Generative Models Go MAD
Sina Alemohammad
,
Josue Casco-Rodriguez
,
Lorenzo Luzi
,
Ahmed Imtiaz Humayun
,
Hossein Babaei
,
Daniel LeJeune
,
Ali Siahkoohi
,
Richard Baraniuk
NeurIPSW
2024
Visualizing Linear RNNs Through Unrolling
Josue Casco-Rodriguez
,
Tyler Burley
,
Cj Barberan
,
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
ICLR
2023
A Primal-Dual Framework for Transformers and Neural Networks
Tan Minh Nguyen
,
Tam Minh Nguyen
,
Nhat Ho
,
Andrea L. Bertozzi
,
Richard Baraniuk
,
Stanley Osher
NeurIPS
2023
Mitigating Over-Smoothing in Transformers via Regularized Nonlocal Functionals
Tam Nguyen
,
Tan Nguyen
,
Richard Baraniuk
ICMLW
2023
Provable Instance Specific Robustness via Linear Constraints
Ahmed Imtiaz Humayun
,
Josue Casco-Rodriguez
,
Randall Balestriero
,
Richard Baraniuk
ICLR
2023
Retrieval-Based Controllable Molecule Generation
Zichao Wang
,
Weili Nie
,
Zhuoran Qiao
,
Chaowei Xiao
,
Richard Baraniuk
,
Anima Anandkumar
CVPR
2022
Can Neural Nets Learn the Same Model Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Perspective
Gowthami Somepalli
,
Liam Fowl
,
Arpit Bansal
,
Ping Yeh-Chiang
,
Yehuda Dar
,
Richard Baraniuk
,
Micah Goldblum
,
Tom Goldstein
NeurIPSW
2022
Exact Visualization of Deep Neural Network Geometry and Decision Boundary
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
ICML
2022
Improving Transformers with Probabilistic Attention Keys
Tam Minh Nguyen
,
Tan Minh Nguyen
,
Dung D. D. Le
,
Duy Khuong Nguyen
,
Viet-Anh Tran
,
Richard Baraniuk
,
Nhat Ho
,
Stanley Osher
ICLR
2022
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
TMLR
2022
Max-Affine Spline Insights into Deep Network Pruning
Haoran You
,
Randall Balestriero
,
Zhihan Lu
,
Yutong Kou
,
Huihong Shi
,
Shunyao Zhang
,
Shang Wu
,
Yingyan Lin
,
Richard Baraniuk
NeurIPS
2022
Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference
Jasper Tan
,
Blake Mason
,
Hamid Javadi
,
Richard Baraniuk
CVPR
2022
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values
Ahmed Imtiaz Humayun
,
Randall Balestriero
,
Richard Baraniuk
NeurIPS
2021
The Flip Side of the Reweighted Coin: Duality of Adaptive Dropout and Regularization
Daniel LeJeune
,
Hamid Javadi
,
Richard Baraniuk
ICLR
2021
The Recurrent Neural Tangent Kernel
Sina Alemohammad
,
Zichao Wang
,
Randall Balestriero
,
Richard Baraniuk
NeurIPS
2020
Analytical Probability Distributions and Exact Expectation-Maximization for Deep Generative Networks
Randall Balestriero
,
Sebastien Paris
,
Richard Baraniuk
NeurIPS
2020
MomentumRNN: Integrating Momentum into Recurrent Neural Networks
Tan Nguyen
,
Richard Baraniuk
,
Andrea Bertozzi
,
Stanley Osher
,
Bao Wang
ICML
2020
Sub-Linear Memory Sketches for near Neighbor Search on Streaming Data
Benjamin Coleman
,
Richard Baraniuk
,
Anshumali Shrivastava
ICML
2020
Subspace Fitting Meets Regression: The Effects of Supervision and Orthonormality Constraints on Double Descent of Generalization Errors
Yehuda Dar
,
Paul Mayer
,
Lorenzo Luzi
,
Richard Baraniuk
AISTATS
2020
The Implicit Regularization of Ordinary Least Squares Ensembles
Daniel LeJeune
,
Hamid Javadi
,
Richard Baraniuk
AISTATS
2020
Thresholding Graph Bandits with GrAPL
Daniel LeJeune
,
Gautam Dasarathy
,
Richard Baraniuk
ICLR
2019
A Max-Affine Spline Perspective of Recurrent Neural Networks
Zichao Wang
,
Randall Balestriero
,
Richard Baraniuk
AISTATS
2019
Adaptive Estimation for Approximate $k$-Nearest-Neighbor Computations
Daniel LeJeune
,
Reinhard Heckel
,
Richard Baraniuk
ICLR
2019
From Hard to Soft: Understanding Deep Network Nonlinearities via Vector Quantization and Statistical Inference
Randall Balestriero
,
Richard Baraniuk
NeurIPS
2019
The Geometry of Deep Networks: Power Diagram Subdivision
Randall Balestriero
,
Romain Cosentino
,
Behnaam Aazhang
,
Richard Baraniuk
ICML
2018
Spline Filters for End-to-End Deep Learning
Randall Balestriero
,
Romain Cosentino
,
Herve Glotin
,
Richard Baraniuk
ICML
2018
prDeep: Robust Phase Retrieval with a Flexible Deep Network
Christopher Metzler
,
Phillip Schniter
,
Ashok Veeraraghavan
,
Richard Baraniuk
NeurIPS
2017
Learned D-AMP: Principled Neural Network Based Compressive Image Recovery
Chris Metzler
,
Ali Mousavi
,
Richard Baraniuk
NeurIPS
2016
A Probabilistic Framework for Deep Learning
Ankit B Patel
,
Minh Tan Nguyen
,
Richard Baraniuk
ICML
2016
Dealbreaker: A Nonlinear Latent Variable Model for Educational Data
Andrew Lan
,
Tom Goldstein
,
Richard Baraniuk
,
Christoph Studer
NeurIPS
2013
When in Doubt, SWAP: High-Dimensional Sparse Recovery from Correlated Measurements
Divyanshu Vats
,
Richard Baraniuk
NeurIPS
2011
SpaRCS: Recovering Low-Rank and Sparse Matrices from Compressive Measurements
Andrew E. Waters
,
Aswin C. Sankaranarayanan
,
Richard Baraniuk
NeurIPS
2008
Sparse Signal Recovery Using Markov Random Fields
Volkan Cevher
,
Marco F. Duarte
,
Chinmay Hegde
,
Richard Baraniuk
NeurIPS
2007
Random Projections for Manifold Learning
Chinmay Hegde
,
Michael Wakin
,
Richard Baraniuk