Baratin, Aristide

19 publications

TMLR 2025 Any-Property-Conditional Molecule Generation with Self-Criticism Using Spanning Trees Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, Yan Zhang
ICLRW 2025 Generating $\pi$-Functional Molecules Using STGG+ with Active Learning Alexia Jolicoeur-Martineau, Yan Zhang, Boris Knyazev, Aristide Baratin, Cheng-Hao Liu
TMLR 2025 Maxwell's Demon at Work: Efficient Pruning by Leveraging Saturation of Neurons Simon Dufort-Labbé, Pierluca D'Oro, Evgenii Nikishin, Irina Rish, Pierre-Luc Bacon, Razvan Pascanu, Aristide Baratin
NeurIPS 2024 Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training Anchit Jain, Rozhin Nobahari, Aristide Baratin, Stefano Sarao Mannelli
NeurIPSW 2024 Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training Anchit Jain, Rozhin Nobahari, Aristide Baratin, Stefano Sarao Mannelli
ICLR 2024 How Connectivity Structure Shapes Rich and Lazy Learning in Neural Circuits Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Todd SheaBrown, Guillaume Lajoie
NeurIPSW 2024 How Learning Rates Shape Neural Network Focus: Insights from Example Ranking Ekaterina Lobacheva, Keller Jordan, Aristide Baratin, Nicolas Le Roux
ICML 2024 Lookbehind-SAM: K Steps Back, 1 Step Forward Goncalo Mordido, Pranshu Malviya, Aristide Baratin, Sarath Chandar
TMLR 2024 Promoting Exploration in Memory-Augmented Adam Using Critical Momenta Pranshu Malviya, Goncalo Mordido, Aristide Baratin, Reza Babanezhad Harikandeh, Jerry Huang, Simon Lacoste-Julien, Razvan Pascanu, Sarath Chandar
ICML 2024 Unsupervised Concept Discovery Mitigates Spurious Correlations Md Rifat Arefin, Yan Zhang, Aristide Baratin, Francesco Locatello, Irina Rish, Dianbo Liu, Kenji Kawaguchi
ICML 2023 CrossSplit: Mitigating Label Noise Memorization Through Data Splitting Jihye Kim, Aristide Baratin, Yan Zhang, Simon Lacoste-Julien
TMLR 2023 Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods Yuchen Lu, Zhen Liu, Aristide Baratin, Romain Laroche, Aaron Courville, Alessandro Sordoni
TMLR 2022 Lazy vs Hasty: Linearization in Deep Networks Impacts Learning Schedule Based on Example Difficulty Thomas George, Guillaume Lajoie, Aristide Baratin
ICMLW 2022 Lazy vs Hasty: Linearization in Deep Networks Impacts Learning Schedule Based on Example Difficulty Thomas George, Guillaume Lajoie, Aristide Baratin
AISTATS 2021 Implicit Regularization via Neural Feature Alignment Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien
NeurIPSW 2020 Implicit Regularization via Neural Feature Alignment Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien
ICMLW 2019 A Modern Take on the Bias-Variance Tradeoff in Neural Networks Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-Julien, Ioannis Mitliagkas
ICML 2019 On the Spectral Bias of Neural Networks Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, Aaron Courville
ICML 2018 Mutual Information Neural Estimation Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, Devon Hjelm