Barber, David

61 publications

ICLR 2025 Improving Probabilistic Diffusion Models with Optimal Diagonal Covariance Matching Zijing Ou, Mingtian Zhang, Andi Zhang, Tim Z. Xiao, Yingzhen Li, David Barber
NeurIPS 2025 Incremental Sequence Classification with Temporal Consistency Lucas Maystre, Gabriel Barello, Tudor Berariu, Aleix Cambray, Rares Dolga, Alvaro Ortega Gonzalez, Andrei Cristian Nica, David Barber
ICLRW 2025 Towards Training One-Step Diffusion Models Without Distillation Mingtian Zhang, Jiajun He, Wenlin Chen, Zijing Ou, José Miguel Hernández-Lobato, Bernhard Schölkopf, David Barber
AISTATS 2025 Training Neural Samplers with Reverse Diffusive KL Divergence Jiajun He, Wenlin Chen, Mingtian Zhang, David Barber, José Miguel Hernández-Lobato
TMLR 2025 Unifying Linear-Time Attention via Latent Probabilistic Modelling Rares Dolga, Lucas Maystre, Marius Cobzarenco, David Barber
ICML 2024 Active Preference Learning for Large Language Models William Muldrew, Peter Hayes, Mingtian Zhang, David Barber
ICML 2024 Diffusive Gibbs Sampling Wenlin Chen, Mingtian Zhang, Brooks Paige, José Miguel Hernández-Lobato, David Barber
NeurIPS 2023 Moment Matching Denoising Gibbs Sampling Mingtian Zhang, Alex Hawkins-Hooker, Brooks Paige, David Barber
MIDL 2023 Survival Analysis for Idiopathic Pulmonary Fibrosis Using CT Images and Incomplete Clinical Data Ahmed Shahin, Joseph Jacob, Daniel Alexander, David Barber
NeurIPS 2022 Generalization Gap in Amortized Inference Mingtian Zhang, Peter Hayes, David Barber
NeurIPSW 2022 Towards Healing the Blindness of Score Matching Mingtian Zhang, Oscar Key, Peter Hayes, David Barber, Brooks Paige, Francois-Xavier Briol
ICML 2021 Addressing Catastrophic Forgetting in Few-Shot Problems Pauching Yap, Hippolyt Ritter, David Barber
ACML 2021 Improving Gaussian Mixture Latent Variable Model Convergence with Optimal Transport Benoit Gaujac, Ilya Feige, David Barber
ECML-PKDD 2021 Learning Disentangled Representations with the Wasserstein Autoencoder Benoit Gaujac, Ilya Feige, David Barber
ICLR 2021 Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks Thomas Bird, Friso Kingma, David Barber
ICLR 2020 HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models James Townsend, Thomas Bird, Julius Kunze, David Barber
ICML 2020 Spread Divergence Mingtian Zhang, Peter Hayes, Thomas Bird, Raza Habib, David Barber
ICLR 2019 Auxiliary Variational MCMC Raza Habib, David Barber
MLJ 2019 Improving Latent Variable Descriptiveness by Modelling Rather than Ad-Hoc Factors Alex Mansbridge, Roberto Fierimonte, Ilya Feige, David Barber
ICLR 2019 Practical Lossless Compression with Latent Variables Using Bits Back Coding James Townsend, Thomas Bird, David Barber
ICLR 2018 A Scalable Laplace Approximation for Neural Networks Hippolyt Ritter, Aleksandar Botev, David Barber
AAAI 2018 Generating Sentences Using a Dynamic Canvas Harshil Shah, Bowen Zheng, David Barber
NeurIPS 2018 Generative Neural Machine Translation Harshil Shah, David Barber
NeurIPS 2018 Modular Networks: Learning to Decompose Neural Computation Louis Kirsch, Julius Kunze, David Barber
NeurIPS 2018 Online Structured Laplace Approximations for Overcoming Catastrophic Forgetting Hippolyt Ritter, Aleksandar Botev, David Barber
AISTATS 2017 Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification Aleksandar Botev, Bowen Zheng, David Barber
ICML 2017 Practical Gauss-Newton Optimisation for Deep Learning Aleksandar Botev, Hippolyt Ritter, David Barber
NeurIPS 2017 Thinking Fast and Slow with Deep Learning and Tree Search Thomas Anthony, Zheng Tian, David Barber
NeurIPS 2017 Wider and Deeper, Cheaper and Faster: Tensorized LSTMs for Sequence Learning Zhen He, Shaobing Gao, Liang Xiao, Daxue Liu, Hangen He, David Barber
JMLR 2016 Approximate Newton Methods for Policy Search in Markov Decision Processes Thomas Furmston, Guy Lever, David Barber
ICML 2014 Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations David Barber, Yali Wang
JMLR 2013 Gaussian Kullback-Leibler Approximate Inference Edward Challis, David Barber
NeurIPS 2012 A Unifying Perspective of Parametric Policy Search Methods for Markov Decision Processes Thomas Furmston, David Barber
NeurIPS 2012 Affine Independent Variational Inference Edward Challis, David Barber
ICML 2012 Bayesian Conditional Cointegration Chris Bracegirdle, David Barber
AISTATS 2011 Concave Gaussian Variational Approximations for Inference in Large-Scale Bayesian Linear Models Edward Challis, David Barber
UAI 2011 Efficient Inference in Markov Control Problems Thomas Furmston, David Barber
ECML-PKDD 2011 Lagrange Dual Decomposition for Finite Horizon Markov Decision Processes Thomas Furmston, David Barber
AISTATS 2011 Switch-Reset Models : Exact and Approximate Inference Chris Bracegirdle, David Barber
AISTATS 2010 Variational Methods for Reinforcement Learning Thomas Furmston, David Barber
UAI 2008 Clique Matrices for Statistical Graph Decomposition and Parameterising Restricted Positive Definite Matrices David Barber
NeurIPS 2006 A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems David Barber, Bertrand Mesot
JMLR 2006 Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems David Barber
NeurIPS 2006 Unified Inference for Variational Bayesian Linear Gaussian State-Space Models David Barber, Silvia Chiappa
ICML 2005 A Graphical Model for Chord Progressions Embedded in a Psychoacoustic Space Jean-François Paiement, Douglas Eck, Samy Bengio, David Barber
NeurIPS 2005 Kernelized Infomax Clustering David Barber, Felix V. Agakov
NeurIPS 2003 Information Maximization in Noisy Channels : A Variational Approach David Barber, Felix V. Agakov
NeurIPS 2002 Dynamic Bayesian Networks with Deterministic Latent Tables David Barber
NeurIPS 2002 Learning in Spiking Neural Assemblies David Barber
NeurIPS 1999 Gaussian Fields for Approximate Inference in Layered Sigmoid Belief Networks David Barber, Peter Sollich
JAIR 1999 Variational Cumulant Expansions for Intractable Distributions David Barber, Piërre van de Laar
NeCo 1998 Online Learning from Finite Training Sets and Robustness to Input Bias Peter Sollich, David Barber
NeurIPS 1998 Tractable Variational Structures for Approximating Graphical Models David Barber, Wim Wiegerinck
NeurIPS 1997 Ensemble Learning for Multi-Layer Networks David Barber, Christopher M. Bishop
NeurIPS 1997 On-Line Learning from Finite Training Sets in Nonlinear Networks Peter Sollich, David Barber
NeurIPS 1997 Radial Basis Functions: A Bayesian Treatment David Barber, Bernhard Schottky
NeurIPS 1996 Bayesian Model Comparison by Monte Carlo Chaining David Barber, Christopher M. Bishop
NeCo 1996 Does Extra Knowledge Necessarily Improve Generalization? David Barber, David Saad
NeurIPS 1996 Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo David Barber, Christopher K. I. Williams
NeurIPS 1996 Online Learning from Finite Training Sets: An Analytical Case Study Peter Sollich, David Barber
NeCo 1995 Test Error Fluctuations in Finite Linear Perceptrons David Barber, David Saad, Peter Sollich