Bartlett, Peter L.

129 publications

JMLR 2025 On the Statistical Properties of Generative Adversarial Models for Low Intrinsic Data Dimension Saptarshi Chakraborty, Peter L. Bartlett
NeurIPS 2024 Fast Best-of-N Decoding via Speculative Rejection Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter L. Bartlett, Andrea Zanette
NeurIPS 2024 In-Context Learning of a Linear Transformer Block: Benefits of the MLP Component and One-Step GD Initialization Ruiqi Zhang, Jingfeng Wu, Peter L. Bartlett
COLT 2024 Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency Jingfeng Wu, Peter L. Bartlett, Matus Telgarsky, Bin Yu
NeurIPS 2024 Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks: Margin Improvement and Fast Optimization Yuhang Cai, Jingfeng Wu, Song Mei, Michael Lindsey, Peter L. Bartlett
NeurIPS 2024 Scaling Laws in Linear Regression: Compute, Parameters, and Data Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter L. Bartlett, Jason D. Lee
JMLR 2024 Sharpness-Aware Minimization and the Edge of Stability Philip M. Long, Peter L. Bartlett
JMLR 2024 Trained Transformers Learn Linear Models In-Context Ruiqi Zhang, Spencer Frei, Peter L. Bartlett
JMLR 2023 Benign Overfitting in Ridge Regression Alexander Tsigler, Peter L. Bartlett
JMLR 2023 Random Feature Amplification: Feature Learning and Generalization in Neural Networks Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett
NeurIPS 2023 The Double-Edged Sword of Implicit Bias: Generalization vs. Robustness in ReLU Networks Spencer Frei, Gal Vardi, Peter L. Bartlett, Nati Srebro
JMLR 2023 The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima Peter L. Bartlett, Philip M. Long, Olivier Bousquet
JMLR 2022 An Efficient Sampling Algorithm for Non-Smooth Composite Potentials Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, Peter L. Bartlett
JMLR 2022 The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer Linear Networks Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett
NeurIPS 2021 Adversarial Examples in Multi-Layer Random ReLU Networks Peter L. Bartlett, Sebastien Bubeck, Yeshwanth Cherapanamjeri
JMLR 2021 Failures of Model-Dependent Generalization Bounds for Least-Norm Interpolation Peter L. Bartlett, Philip M. Long
JMLR 2021 High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan
NeurIPS 2021 Near Optimal Policy Optimization via REPS Aldo Pacchiano, Jonathan N Lee, Peter L. Bartlett, Ofir Nachum
NeurIPS 2021 On the Theory of Reinforcement Learning with Once-per-Episode Feedback Niladri Chatterji, Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan
JMLR 2021 When Does Gradient Descent with Logistic Loss Find Interpolating Two-Layer Networks? Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett
JMLR 2020 Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, Martin J. Wainwright
IJCAI 2020 Greedy Convex Ensemble Thanh Tan Nguyen, Nan Ye, Peter L. Bartlett
COLT 2020 On Linear Stochastic Approximation: Fine-Grained Polyak-Ruppert and Non-Asymptotic Concentration Wenlong Mou, Chris Junchi Li, Martin J Wainwright, Peter L Bartlett, Michael I Jordan
NeurIPS 2020 Preference Learning Along Multiple Criteria: A Game-Theoretic Perspective Kush Bhatia, Ashwin Pananjady, Peter L. Bartlett, Anca Dragan, Martin J. Wainwright
NeurIPS 2020 Self-Distillation Amplifies Regularization in Hilbert Space Hossein Mobahi, Mehrdad Farajtabar, Peter L. Bartlett
ALT 2019 A Simple Parameter-Free and Adaptive Approach to Optimization Under a Minimal Local Smoothness Assumption Peter L. Bartlett, Victor Gabillon, Michal Valko
COLT 2019 Fast Mean Estimation with Sub-Gaussian Rates Yeshwanth Cherapanamjeri, Nicolas Flammarion, Peter L. Bartlett
JMLR 2019 Nearly-Tight VC-Dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks Peter L. Bartlett, Nick Harvey, Christopher Liaw, Abbas Mehrabian
COLT 2019 Testing Symmetric Markov Chains Without Hitting Yeshwanth Cherapanamjeri, Peter L. Bartlett
COLT 2018 Best of Both Worlds: Stochastic & Adversarial Best-Arm Identification Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek, Michal Valko
AISTATS 2018 FLAG N' FLARE: Fast Linearly-Coupled Adaptive Gradient Methods Xiang Cheng, Fred (Farbod) Roosta, Stefan Palombo, Peter L. Bartlett, Michael W. Mahoney
NeurIPS 2018 Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation Kush Bhatia, Aldo Pacchiano, Nicolas Flammarion, Peter L Bartlett, Michael I Jordan
AISTATS 2018 Gradient Diversity: A Key Ingredient for Scalable Distributed Learning Dong Yin, Ashwin Pananjady, Maximilian Lam, Dimitris S. Papailiopoulos, Kannan Ramchandran, Peter L. Bartlett
NeurIPS 2018 Horizon-Independent Minimax Linear Regression Alan Malek, Peter L Bartlett
COLT 2018 Underdamped Langevin MCMC: A Non-Asymptotic Analysis Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, Michael I. Jordan
NeurIPS 2017 Acceleration and Averaging in Stochastic Descent Dynamics Walid Krichene, Peter L Bartlett
NeurIPS 2017 Alternating Minimization for Dictionary Learning with Random Initialization Niladri Chatterji, Peter L Bartlett
AAAI 2017 Fast-Tracking Stationary MOMDPs for Adaptive Management Problems Martin Péron, Kai Helge Becker, Peter L. Bartlett, Iadine Chades
AISTATS 2017 Hit-and-Run for Sampling and Planning in Non-Convex Spaces Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek
NeurIPS 2017 Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem Yasin Abbasi Yadkori, Peter L Bartlett, Victor Gabillon
ICML 2017 Recovery Guarantees for One-Hidden-Layer Neural Networks Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon
NeurIPS 2017 Spectrally-Normalized Margin Bounds for Neural Networks Peter L Bartlett, Dylan J Foster, Matus J Telgarsky
AISTATS 2016 A Fast and Reliable Policy Improvement Algorithm Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright
NeurIPS 2016 Adaptive Averaging in Accelerated Descent Dynamics Walid Krichene, Alexandre Bayen, Peter L Bartlett
AISTATS 2016 Improved Learning Complexity in Combinatorial Pure Exploration Bandits Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter L. Bartlett
NeurIPS 2015 Accelerated Mirror Descent in Continuous and Discrete Time Walid Krichene, Alexandre Bayen, Peter L Bartlett
COLT 2015 Minimax Fixed-Design Linear Regression Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, Manfred K. Warmuth
NeurIPS 2015 Minimax Time Series Prediction Wouter M. Koolen, Alan Malek, Peter L Bartlett, Yasin Abbasi Yadkori
NeurIPS 2014 Efficient Minimax Strategies for Square Loss Games Wouter M. Koolen, Alan Malek, Peter L Bartlett
NeurIPS 2014 Large-Margin Convex Polytope Machine Alex Kantchelian, Michael C Tschantz, Ling Huang, Peter L Bartlett, Anthony D Joseph, J. D. Tygar
COLT 2013 Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families Peter L. Bartlett, Peter Grünwald, Peter Harremoës, Fares Hedayati, Wojciech Kotlowski
NeurIPS 2013 How to Hedge an Option Against an Adversary: Black-Scholes Pricing Is Minimax Optimal Jacob Abernethy, Peter L Bartlett, Rafael Frongillo, Andre Wibisono
NeurIPS 2013 Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions Yasin Abbasi Yadkori, Peter L Bartlett, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari
COLT 2013 Open Problem: Adversarial Multiarmed Bandits with Limited Advice Yevgeny Seldin, Koby Crammer, Peter L. Bartlett
COLT 2012 The Optimality of Jeffreys Prior for Online Density Estimation and the Asymptotic Normality of Maximum Likelihood Estimators Fares Hedayati, Peter L. Bartlett
COLT 2011 Blackwell Approachability and No-Regret Learning Are Equivalent Jacob Abernethy, Peter L. Bartlett, Elad Hazan
UAI 2011 Learning with Missing Features Afshin Rostamizadeh, Alekh Agarwal, Peter L. Bartlett
COLT 2011 Oracle Inequalities for Computationally Budgeted Model Selection Alekh Agarwal, John C. Duchi, Peter L. Bartlett, Clement Levrard
ALT 2010 A Regularization Approach to Metrical Task Systems Jacob D. Abernethy, Peter L. Bartlett, Niv Buchbinder, Isabelle Stanton
ECML-PKDD 2010 A Unifying View of Multiple Kernel Learning Marius Kloft, Ulrich Rückert, Peter L. Bartlett
ICML 2010 Implicit Online Learning Brian Kulis, Peter L. Bartlett
ALT 2010 Optimal Online Prediction in Adversarial Environments Peter L. Bartlett
COLT 2009 A Stochastic View of Optimal Regret Through Minimax Duality Jacob D. Abernethy, Alekh Agarwal, Peter L. Bartlett, Alexander Rakhlin
NeurIPS 2009 Information-Theoretic Lower Bounds on the Oracle Complexity of Convex Optimization Alekh Agarwal, Martin J. Wainwright, Peter L. Bartlett, Pradeep K. Ravikumar
UAI 2009 REGAL: A Regularization Based Algorithm for Reinforcement Learning in Weakly Communicating MDPs Peter L. Bartlett, Ambuj Tewari
JMLR 2008 Classification with a Reject Option Using a Hinge Loss Peter L. Bartlett, Marten H. Wegkamp
JMLR 2008 Exponentiated Gradient Algorithms for Conditional Random Fields and Max-Margin Markov Networks Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, Peter L. Bartlett
COLT 2008 High-Probability Regret Bounds for Bandit Online Linear Optimization Peter L. Bartlett, Varsha Dani, Thomas P. Hayes, Sham M. Kakade, Alexander Rakhlin, Ambuj Tewari
COLT 2008 Optimal Stragies and Minimax Lower Bounds for Online Convex Games Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin, Ambuj Tewari
JMLR 2007 AdaBoost Is Consistent Peter L. Bartlett, Mikhail Traskin
NeurIPS 2007 Adaptive Online Gradient Descent Peter L. Bartlett, Elad Hazan, Alexander Rakhlin
COLT 2007 Bounded Parameter Markov Decision Processes with Average Reward Criterion Ambuj Tewari, Peter L. Bartlett
COLT 2007 Multitask Learning with Expert Advice Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin
JMLR 2007 On the Consistency of Multiclass Classification Methods Ambuj Tewari, Peter L. Bartlett
ICML 2007 Online Discovery of Similarity Mappings Alexander Rakhlin, Jacob D. Abernethy, Peter L. Bartlett
NeurIPS 2007 Optimistic Linear Programming Gives Logarithmic Regret for Irreducible MDPs Ambuj Tewari, Peter L. Bartlett
JMLR 2007 Sparseness vs Estimating Conditional Probabilities: Some Asymptotic Results Peter L. Bartlett, Ambuj Tewari
AISTATS 2007 The Rademacher Complexity of Co-Regularized Kernel Classes David S. Rosenberg, Peter L. Bartlett
NeurIPS 2006 AdaBoost Is Consistent Peter L. Bartlett, Mikhail Traskin
NeurIPS 2006 Sample Complexity of Policy Search with Known Dynamics Peter L. Bartlett, Ambuj Tewari
NeurIPS 2006 Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds Benjamin I. Rubinstein, Peter L. Bartlett, J. H. Rubinstein
COLT 2005 On the Consistency of Multiclass Classification Methods Ambuj Tewari, Peter L. Bartlett
NeurIPS 2004 Exponentiated Gradient Algorithms for Large-Margin Structured Classification Peter L. Bartlett, Michael Collins, Ben Taskar, David A. McAllester
COLT 2004 Local Complexities for Empirical Risk Minimization Peter L. Bartlett, Shahar Mendelson, Petra Philips
COLT 2004 Sparseness Versus Estimating Conditional Probabilities: Some Asymptotic Results Peter L. Bartlett, Ambuj Tewari
JMLR 2004 Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning Evan Greensmith, Peter L. Bartlett, Jonathan Baxter
NeurIPS 2003 Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates Peter L. Bartlett, Michael I. Jordan, Jon D. Mcauliffe
ICML 2002 Learning the Kernel Matrix with Semi-Definite Programming Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan
COLT 2002 Localized Rademacher Complexities Peter L. Bartlett, Olivier Bousquet, Shahar Mendelson
MLJ 2002 Model Selection and Error Estimation Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi
JMLR 2002 Rademacher and Gaussian Complexities: Risk Bounds and Structural Results Peter L. Bartlett, Shahar Mendelson
JAIR 2001 Experiments with Infinite-Horizon, Policy-Gradient Estimation Jonathan Baxter, Peter L. Bartlett, Lex Weaver
JAIR 2001 Infinite-Horizon Policy-Gradient Estimation Jonathan Baxter, Peter L. Bartlett
COLT 2001 Rademacher and Gaussian Complexities: Risk Bounds and Structural Results Peter L. Bartlett, Shahar Mendelson
NeurIPS 2001 Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning Evan Greensmith, Peter L. Bartlett, Jonathan Baxter
COLT 2000 Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning Peter L. Bartlett, Jonathan Baxter
MLJ 2000 Improved Generalization Through Explicit Optimization of Margins Llew Mason, Peter L. Bartlett, Jonathan Baxter
MLJ 2000 Learning Changing Concepts by Exploiting the Structure of Change Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni
COLT 2000 Model Selection and Error Estimation Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi
NeCo 2000 New Support Vector Algorithms Bernhard Schölkopf, Alexander J. Smola, Robert C. Williamson, Peter L. Bartlett
ICML 2000 Reinforcement Learning in POMDP's via Direct Gradient Ascent Jonathan Baxter, Peter L. Bartlett
NeurIPS 2000 Sparse Greedy Gaussian Process Regression Alex J. Smola, Peter L. Bartlett
NeurIPS 1999 Boosting Algorithms as Gradient Descent Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean
COLT 1999 Covering Numbers for Support Vector Machines Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson
NeurIPS 1998 Almost Linear VC Dimension Bounds for Piecewise Polynomial Networks Peter L. Bartlett, Vitaly Maiorov, Ron Meir
NeCo 1998 Almost Linear VC-Dimension Bounds for Piecewise Polynomial Networks Peter L. Bartlett, Vitaly Maiorov, Ron Meir
NeurIPS 1998 Direct Optimization of Margins Improves Generalization in Combined Classifiers Llew Mason, Peter L. Bartlett, Jonathan Baxter
COLT 1998 Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24-26, 1998 Peter L. Bartlett, Yishay Mansour
NeurIPS 1998 Shrinking the Tube: A New Support Vector Regression Algorithm Bernhard Schölkopf, Peter L. Bartlett, Alex J. Smola, Robert C. Williamson
NeCo 1997 Correction to 'Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes' Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
NeurIPS 1997 Generalization in Decision Trees and DNF: Does Size Matter? Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
NeurIPS 1997 The Canonical Distortion Measure in Feature Space and 1-NN Classification Jonathan Baxter, Peter L. Bartlett
COLT 1996 A Framework for Structural Risk Minimisation John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony
NeurIPS 1996 For Valid Generalization the Size of the Weights Is More Important than the Size of the Network Peter L. Bartlett
COLT 1996 Learning Changing Concepts by Exploiting the Structure of Change Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni
COLT 1996 The Importance of Convexity in Learning with Squared Loss Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
NeCo 1996 The VC Dimension and Pseudodimension of Two-Layer Neural Networks with Discrete Inputs Peter L. Bartlett, Robert C. Williamson
NeurIPS 1995 Examples of Learning Curves from a Modified VC-Formalism Adam Kowalczyk, Jacek Szymanski, Peter L. Bartlett, Robert C. Williamson
NeCo 1995 Lower Bounds on the VC Dimension of Smoothly Parameterized Function Classes Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
COLT 1995 More Theorems About Scale-Sensitive Dimensions and Learning Peter L. Bartlett, Philip M. Long
COLT 1995 On Efficient Agnostic Learning of Linear Combinations of Basis Functions Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
COLT 1994 Exploiting Random Walks for Learning Peter L. Bartlett, Paul Fischer, Klaus-Uwe Höffgen
COLT 1994 Fat-Shattering and the Learnability of Real-Valued Functions Peter L. Bartlett, Philip M. Long, Robert C. Williamson
COLT 1994 Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
COLT 1993 Lower Bounds on the Vapnik-Chervonenkis Dimension of Multi-Layer Threshold Networks Peter L. Bartlett
NeCo 1993 Vapnik-Chervonenkis Dimension Bounds for Two- and Three-Layer Networks Peter L. Bartlett
COLT 1992 Learning with a Slowly Changing Distribution Peter L. Bartlett
COLT 1991 Investigating the Distribution Assumptions in the Pac Learning Model Peter L. Bartlett, Robert C. Williamson
NeurIPS 1991 Splines, Rational Functions and Neural Networks Robert C. Williamson, Peter L. Bartlett