Bastani, Osbert

77 publications

NeurIPS 2025 Alignment of Large Language Models with Constrained Learning Botong Zhang, Shuo Li, Ignacio Hounie, Osbert Bastani, Dongsheng Ding, Alejandro Ribeiro
ICLR 2025 Conformal Structured Prediction Botong Zhang, Shuo Li, Osbert Bastani
ICLRW 2025 Conformal Structured Prediction Botong Zhang, Shuo Li, Osbert Bastani
ICML 2025 Diversity by Design: Leveraging Distribution Matching for Offline Model-Based Optimization Michael S Yao, James Gee, Osbert Bastani
ICLRW 2025 Evaluating the Diversity and Quality of LLM Generated Content Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, Osbert Bastani
ICLRW 2025 LLM Program Optimization via Retrieval Augmented Search Sagnik Anupam, Alexander Shypula, Osbert Bastani
ICML 2025 Stochastic Online Conformal Prediction with Semi-Bandit Feedback Haosen Ge, Hamsa Bastani, Osbert Bastani
ICLR 2025 Vision Language Models Are In-Context Value Learners Yecheng Jason Ma, Joey Hejna, Chuyuan Fu, Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani, Peng Xu, Danny Driess, Ted Xiao, Osbert Bastani, Dinesh Jayaraman, Wenhao Yu, Tingnan Zhang, Dorsa Sadigh, Fei Xia
ICLR 2025 Zeroth-Order Fine-Tuning of LLMs with Transferable Static Sparsity Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, Zhaozhuo Xu
ICLRW 2024 Antibody Design with Constrained Bayesian Optimization Yimeng Zeng, Hunter Elliott, Phillip Maffettone, Peyton Greenside, Osbert Bastani, Jacob R. Gardner
CoRL 2024 Environment Curriculum Generation via Large Language Models William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman, Yecheng Jason Ma
ICLR 2024 Eureka: Human-Level Reward Design via Coding Large Language Models Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
NeurIPS 2024 Generative Adversarial Model-Based Optimization via Source Critic Regularization Michael S. Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C. Gee, Osbert Bastani
ICLR 2024 Learning Performance-Improving Code Edits Alexander G Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, Amir Yazdanbakhsh
NeurIPS 2024 One-Shot Safety Alignment for Large Language Models via Optimal Dualization Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, Dongsheng Ding
ICMLW 2024 One-Shot Safety Alignment for Large Language Models via Optimal Dualization Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, Dongsheng Ding
ICMLW 2024 One-Shot Safety Alignment for Large Language Models via Optimal Dualization Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, Dongsheng Ding
ICLR 2024 PAC Prediction Sets Under Label Shift Wenwen Si, Sangdon Park, Insup Lee, Edgar Dobriban, Osbert Bastani
ICML 2024 Stochastic Bandits with ReLU Neural Networks Kan Xu, Hamsa Bastani, Surbhi Goel, Osbert Bastani
ICMLW 2024 Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, Zhaozhuo Xu
ICMLW 2024 Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, Zhaozhuo Xu
CVPR 2023 Angelic Patches for Improving Third-Party Object Detector Performance Wenwen Si, Shuo Li, Sangdon Park, Insup Lee, Osbert Bastani
NeurIPSW 2023 Eureka: Human-Level Reward Design via Coding Large Language Models Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
NeurIPSW 2023 Eureka: Human-Level Reward Design via Coding Large Language Models Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
ICML 2023 LIV: Language-Image Representations and Rewards for Robotic Control Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, Dinesh Jayaraman
ICLRW 2023 LIV: Language-Image Representations and Rewards for Robotic Control Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, Dinesh Jayaraman
L4DC 2023 Learning Policy-Aware Models for Model-Based Reinforcement Learning via Transition Occupancy Matching Yecheng Jason Ma, Kausik Sivakumar, Jason Yan, Osbert Bastani, Dinesh Jayaraman
ICML 2023 PAC Prediction Sets for Large Language Models of Code Adam Khakhar, Stephen Mell, Osbert Bastani
ICML 2023 Robust Subtask Learning for Compositional Generalization Kishor Jothimurugan, Steve Hsu, Osbert Bastani, Rajeev Alur
ICMLW 2023 TRAC: Trustworthy Retrieval Augmented Chatbot Shuo Li, Sangdon Park, Insup Lee, Osbert Bastani
AISTATS 2023 Uniformly Conservative Exploration in Reinforcement Learning Wanqiao Xu, Yecheng Ma, Kan Xu, Hamsa Bastani, Osbert Bastani
NeurIPSW 2023 Universal Visual Decomposer: Long-Horizon Manipulation Made Easy Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason Ma, Luca Weihs
NeurIPSW 2023 Universal Visual Decomposer: Long-Horizon Manipulation Made Easy Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason Ma, Luca Weihs
ICLR 2023 VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
AAAI 2022 Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning Yecheng Jason Ma, Andrew Shen, Osbert Bastani, Dinesh Jayaraman
CoRL 2022 Exploring with Sticky Mittens: Reinforcement Learning with Expert Interventions via Option Templates Souradeep Dutta, Kaustubh Sridhar, Osbert Bastani, Edgar Dobriban, James Weimer, Insup Lee, Julia Parish-Morris
NeurIPS 2022 Neurosymbolic Deep Generative Models for Sequence Data with Relational Constraints Halley Young, Maxwell Du, Osbert Bastani
NeurIPS 2022 Offline Goal-Conditioned Reinforcement Learning via $f$-Advantage Regression Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, Osbert Bastani
ICLR 2022 PAC Prediction Sets Under Covariate Shift Sangdon Park, Edgar Dobriban, Insup Lee, Osbert Bastani
NeurIPS 2022 PAC Prediction Sets for Meta-Learning Sangdon Park, Edgar Dobriban, Insup Lee, Osbert Bastani
NeurIPSW 2022 Policy Aware Model Learning via Transition Occupancy Matching Yecheng Jason Ma, Kausik Sivakumar, Osbert Bastani, Dinesh Jayaraman
NeurIPSW 2022 Policy Aware Model Learning via Transition Occupancy Matching Yecheng Jason Ma, Kausik Sivakumar, Osbert Bastani, Dinesh Jayaraman
NeurIPS 2022 Practical Adversarial Multivalid Conformal Prediction Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, Aaron Roth
NeurIPS 2022 Regret Bounds for Risk-Sensitive Reinforcement Learning Osbert Bastani, Jason Yecheng Ma, Estelle Shen, Wanqiao Xu
NeurIPSW 2022 Robust Option Learning for Compositional Generalization Kishor Jothimurugan, Steve Hsu, Osbert Bastani, Rajeev Alur
ICML 2022 Sequential Covariate Shift Detection Using Classifier Two-Sample Tests Sooyong Jang, Sangdon Park, Insup Lee, Osbert Bastani
NeurIPSW 2022 Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
ICML 2022 Understanding Robust Generalization in Learning Regular Languages Soham Dan, Osbert Bastani, Dan Roth
NeurIPSW 2022 VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
NeurIPSW 2022 VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
ICLRW 2022 Versatile Offline Imitation Learning via State-Occupancy Matching Yecheng Jason Ma, Andrew Shen, Dinesh Jayaraman, Osbert Bastani
ICML 2022 Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching Yecheng Ma, Andrew Shen, Dinesh Jayaraman, Osbert Bastani
AISTATS 2021 Abstract Value Iteration for Hierarchical Reinforcement Learning Kishor Jothimurugan, Osbert Bastani, Rajeev Alur
AISTATS 2021 Algorithms for Fairness in Sequential Decision Making Min Wen, Osbert Bastani, Ufuk Topcu
NeurIPS 2021 Compositional Reinforcement Learning from Logical Specifications Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, Rajeev Alur
NeurIPS 2021 Conservative Offline Distributional Reinforcement Learning Yecheng Ma, Dinesh Jayaraman, Osbert Bastani
NeurIPSW 2021 Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning Yecheng Jason Ma, Andrew Shen, Osbert Bastani, Dinesh Jayaraman
ICML 2021 Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings Kan Xu, Xuanyi Zhao, Hamsa Bastani, Osbert Bastani
NeurIPS 2021 Learning Models for Actionable Recourse Alexis Ross, Himabindu Lakkaraju, Osbert Bastani
ICCV 2021 Likelihood-Based Diverse Sampling for Trajectory Forecasting Yecheng Jason Ma, Jeevana Priya Inala, Dinesh Jayaraman, Osbert Bastani
ICLR 2021 PAC Confidence Predictions for Deep Neural Network Classifiers Sangdon Park, Shuo Li, Insup Lee, Osbert Bastani
NeurIPSW 2021 PAC Synthesis of Machine Learning Programs Osbert Bastani
NeurIPS 2021 Program Synthesis Guided Reinforcement Learning for Partially Observed Environments Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, Martin Rinard
NeurIPSW 2021 Synthesizing Video Trajectory Queries Stephen Mell, Favyen Bastani, Stephan Zdancewic, Osbert Bastani
AISTATS 2020 Calibrated Prediction with Covariate Shift via Unsupervised Domain Adaptation Sangdon Park, Osbert Bastani, James Weimer, Insup Lee
ICML 2020 Generating Programmatic Referring Expressions via Program Synthesis Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, Mayur Naik
NeurIPS 2020 Neurosymbolic Transformers for Multi-Agent Communication Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin Rinard, Armando Solar-Lezama
ICLR 2020 PAC Confidence Sets for Deep Neural Networks via Calibrated Prediction Sangdon Park, Osbert Bastani, Nikolai Matni, Insup Lee
ICML 2020 Robust and Stable Black Box Explanations Himabindu Lakkaraju, Nino Arsov, Osbert Bastani
AISTATS 2020 Sample Complexity of Estimating the Policy Gradient for Nearly Deterministic Dynamical Systems Osbert Bastani
ICLR 2020 Synthesizing Programmatic Policies That Inductively Generalize Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, Armando Solar-Lezama
NeurIPS 2019 A Composable Specification Language for Reinforcement Learning Tasks Kishor Jothimurugan, Rajeev Alur, Osbert Bastani
ICML 2019 Learning Neurosymbolic Generative Models via Program Synthesis Halley Young, Osbert Bastani, Mayur Naik
ICLRW 2019 Learning Neurosymbolic Generative Models via Program Synthesis Halley Young, Osbert Bastani, Mayur Naik
NeurIPS 2018 Verifiable Reinforcement Learning via Policy Extraction Osbert Bastani, Yewen Pu, Armando Solar-Lezama
NeurIPS 2016 Measuring Neural Net Robustness with Constraints Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, Antonio Criminisi
ICLR 2013 Zero-Shot Learning Through Cross-Modal Transfer Richard Socher, Milind Ganjoo, Hamsa Sridhar, Osbert Bastani, Christopher D. Manning, Andrew Y. Ng