Belanger, David

13 publications

ICML 2022 Constrained Discrete Black-Box Optimization Using Mixed-Integer Programming Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross Anderson, Juan Pablo Vielma, David Belanger
ICCVW 2021 Generalizing Few-Shot Classification of Whole-Genome Doubling Across Cancer Types Sherry Chao, David Belanger
ICLR 2020 Model-Based Reinforcement Learning for Biological Sequence Design Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, Lucy Colwell
ICML 2020 Population-Based Black-Box Optimization for Biological Sequence Design Christof Angermueller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin Murphy, Lucy Colwell, D Sculley
ICLR 2018 Learning Latent Permutations with Gumbel-Sinkhorn Networks Gonzalo Mena, David Belanger, Scott Linderman, Jasper Snoek
ICML 2017 End-to-End Learning for Structured Prediction Energy Networks David Belanger, Bishan Yang, Andrew McCallum
CVPR 2017 Synthesizing Normalized Faces from Facial Identity Features Forrester Cole, David Belanger, Dilip Krishnan, Aaron Sarna, Inbar Mosseri, William T. Freeman
AISTATS 2016 Bethe Learning of Graphical Models via MAP Decoding Kui Tang, Nicholas Ruozzi, David Belanger, Tony Jebara
ICML 2016 Structured Prediction Energy Networks David Belanger, Andrew McCallum
ICML 2015 A Linear Dynamical System Model for Text David Belanger, Sham Kakade
UAI 2015 Bethe Projections for Non-Local Inference Luke Vilnis, David Belanger, Daniel Sheldon, Andrew McCallum
UAI 2014 Message Passing for Soft Constraint Dual Decomposition David Belanger, Alexandre Passos, Sebastian Riedel, Andrew McCallum
NeurIPS 2012 MAP Inference in Chains Using Column Generation David Belanger, Alexandre Passos, Sebastian Riedel, Andrew McCallum