Bendersky, Michael

7 publications

ICLR 2025 Inference Scaling for Long-Context Retrieval Augmented Generation Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuanhui Wang, Michael Bendersky
ICLRW 2025 RMBoost: Reward Model Training with Preference-Conditional Multi-Aspect Synthetic Data Generation Jiaming Shen, Ran Xu, Yennie Jun, Zhen Qin, Tianqi Liu, Carl Yang, Yi Liang, Simon Baumgartner, Michael Bendersky
ICML 2024 Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu
ICLRW 2024 Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu
NeurIPS 2023 Learning List-Level Domain-Invariant Representations for Ranking Ruicheng Xian, Honglei Zhuang, Zhen Qin, Hamed Zamani, Jing Lu, Ji Ma, Kai Hui, Han Zhao, Xuanhui Wang, Michael Bendersky
ICLR 2021 Are Neural Rankers Still Outperformed by Gradient Boosted Decision Trees? Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
IJCAI 2018 Learning with Sparse and Biased Feedback for Personal Search Michael Bendersky, Xuanhui Wang, Marc Najork, Donald Metzler