Berthet, Quentin

21 publications

AISTATS 2025 Implicit Diffusion: Efficient Optimization Through Stochastic Sampling Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe Llinares-López, Courtney Paquette, Quentin Berthet
ICML 2024 Decoding-Time Realignment of Language Models Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe Llinares-López, Jessica Hoffmann, Lucas Dixon, Michal Valko, Mathieu Blondel
ICMLW 2024 Implicit Diffusion: Efficient Optimization Through Stochastic Sampling Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe Llinares-López, Courtney Paquette, Quentin Berthet
ICMLW 2023 Differentiable Clustering and Partial Fenchel-Young Losses Lawrence Stewart, Francis Bach, Felipe Llinares-López, Quentin Berthet
NeurIPS 2023 Differentiable Clustering with Perturbed Spanning Forests Lawrence Stewart, Francis R. Bach, Felipe Llinares-Lopez, Quentin Berthet
ICML 2023 Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes Marin Ballu, Quentin Berthet
AISTATS 2023 Regression as Classification: Influence of Task Formulation on Neural Network Features Lawrence Stewart, Francis Bach, Quentin Berthet, Jean-Philippe Vert
NeurIPS 2022 Efficient and Modular Implicit Differentiation Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-Lopez, Fabian Pedregosa, Jean-Philippe Vert
NeurIPS 2022 Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm Under Parallelization Benjamin Dubois-Taine, Francis R. Bach, Quentin Berthet, Adrien Taylor
ICML 2020 Fast Differentiable Sorting and Ranking Mathieu Blondel, Olivier Teboul, Quentin Berthet, Josip Djolonga
NeurIPS 2020 Learning with Differentiable Pertubed Optimizers Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach
AISTATS 2020 Statistical and Computational Rates in Graph Logistic Regression Quentin Berthet, Nicolai Baldin
ICML 2020 Stochastic Optimization for Regularized Wasserstein Estimators Marin Ballu, Quentin Berthet, Francis Bach
AISTATS 2019 Detection of Planted Solutions for Flat Satisfiability Problems Quentin Berthet, Jordan Ellenberg
COLT 2019 Estimation of Smooth Densities in Wasserstein Distance Jonathan Weed, Quentin Berthet
AISTATS 2019 Regularized Contextual Bandits Xavier Fontaine, Quentin Berthet, Vianney Perchet
AISTATS 2019 Statistical Windows in Testing for the Initial Distribution of a Reversible Markov Chain Quentin Berthet, Varun Kanade
AISTATS 2019 Unsupervised Alignment of Embeddings with Wasserstein Procrustes Edouard Grave, Armand Joulin, Quentin Berthet
NeurIPS 2017 Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe Quentin Berthet, Vianney Perchet
NeurIPS 2016 Average-Case Hardness of RIP Certification Tengyao Wang, Quentin Berthet, Yaniv Plan
COLT 2013 Complexity Theoretic Lower Bounds for Sparse Principal Component Detection Quentin Berthet, Philippe Rigollet