ML Anthology
Authors
Search
About
Bertsimas, Dimitris
35 publications
TMLR
2026
Prescribe-Then-Select: Adaptive Policy Selection for Contextual Stochastic Optimization
Caio de Próspero Iglesias
,
Kimberly Villalobos Carballo
,
Dimitris Bertsimas
MLJ
2025
Adaptive Optimization for Prediction with Missing Data
Dimitris Bertsimas
,
Arthur Delarue
,
Jean Pauphilet
TMLR
2025
Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations
Dimitris Bertsimas
,
Caio de Próspero Iglesias
,
Nicholas A. G. Johnson
MLJ
2024
Compressed Sensing: A Discrete Optimization Approach
Dimitris Bertsimas
,
Nicholas A. G. Johnson
MLJ
2024
Holistic Deep Learning
Dimitris Bertsimas
,
Kimberly Villalobos Carballo
,
Léonard Boussioux
,
Michael Lingzhi Li
,
Alex Paskov
,
Ivan S. Paskov
JMLR
2024
Interpretable Algorithmic Fairness in Structured and Unstructured Data
Hari Bandi
,
Dimitris Bertsimas
,
Thodoris Koukouvinos
,
Sofie Kupiec
NeurIPSW
2024
M3H: Multimodal Multitask Machine Learning for Healthcare
Dimitris Bertsimas
,
Yu Ma
NeurIPSW
2024
Policy Trees for Prediction: Interpretable and Adaptive Model Selection for Machine Learning
Matthew Peroni
,
Dimitris Bertsimas
TMLR
2024
Simple Imputation Rules for Prediction with Missing Data: Theoretical Guarantees vs. Empirical Performance
Dimitris Bertsimas
,
Arthur Delarue
,
Jean Pauphilet
NeurIPSW
2024
Skip Transformers: Efficient Inference Through Skip-Routing
Matthew Peroni
,
Dimitris Bertsimas
TMLR
2024
Universal Neurons in GPT2 Language Models
Wes Gurnee
,
Theo Horsley
,
Zifan Carl Guo
,
Tara Rezaei Kheirkhah
,
Qinyi Sun
,
Will Hathaway
,
Neel Nanda
,
Dimitris Bertsimas
NeurIPSW
2023
Fast and Scalable Inference of Dynamical Systems via Integral Matching
Baptiste T Rossi
,
Dimitris Bertsimas
TMLR
2023
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Wes Gurnee
,
Neel Nanda
,
Matthew Pauly
,
Katherine Harvey
,
Dmitrii Troitskii
,
Dimitris Bertsimas
JMLR
2023
Sparse PCA: A Geometric Approach
Dimitris Bertsimas
,
Driss Lahlou Kitane
JMLR
2023
Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach
Dimitris Bertsimas
,
Ryan Cory-Wright
,
Nicholas A. G. Johnson
MLJ
2023
Tensor Completion with Noisy Side Information
Dimitris Bertsimas
,
Colin Pawlowski
MLJ
2022
Optimal Survival Trees
Dimitris Bertsimas
,
Jack Dunn
,
Emma Gibson
,
Agni Orfanoudaki
JMLR
2022
Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality
Dimitris Bertsimas
,
Ryan Cory-Wright
,
Jean Pauphilet
JMLR
2022
Stable Classification
Dimitris Bertsimas
,
Jack Dunn
,
Ivan Paskov
MLJ
2022
The Backbone Method for Ultra-High Dimensional Sparse Machine Learning
Dimitris Bertsimas
,
Vassilis Digalakis
MLJ
2022
World-Class Interpretable Poker
Dimitris Bertsimas
,
Alex Paskov
MLJ
2021
Imputation of Clinical Covariates in Time Series
Dimitris Bertsimas
,
Agni Orfanoudaki
,
Colin Pawlowski
MLJ
2021
Interpretable Clustering: An Optimization Approach
Dimitris Bertsimas
,
Agni Orfanoudaki
,
Holly M. Wiberg
MLJ
2021
Sparse Classification: A Scalable Discrete Optimization Perspective
Dimitris Bertsimas
,
Jean Pauphilet
,
Bart P. G. Van Parys
MLJ
2021
The Voice of Optimization
Dimitris Bertsimas
,
Bartolomeo Stellato
JMLR
2020
Fast Exact Matrix Completion: A Unified Optimization Framework for Matrix Completion
Dimitris Bertsimas
,
Michael Lingzhi Li
MLHC
2020
Optimizing Influenza Vaccine Composition: From Predictions to Prescriptions
Hari Bandi
,
Dimitris Bertsimas
MLJ
2020
Sparse Hierarchical Regression with Polynomials
Dimitris Bertsimas
,
Bart P. G. Van Parys
JMLR
2020
Stable Regression: On the Power of Optimization over Randomization
Dimitris Bertsimas
,
Ivan Paskov
NeurIPS
2018
Optimization over Continuous and Multi-Dimensional Decisions with Observational Data
Dimitris Bertsimas
,
Christopher McCord
JMLR
2017
Certifiably Optimal Low Rank Factor Analysis
Dimitris Bertsimas
,
Martin S. Copenhaver
,
Rahul Mazumder
MLJ
2017
Optimal Classification Trees
Dimitris Bertsimas
,
Jack Dunn
NeurIPS
2012
An Integer Optimization Approach to Associative Classification
Dimitris Bertsimas
,
Allison Chang
,
Cynthia Rudin
MLJ
1999
Estimation of Time-Varying Parameters in Statistical Models: An Optimization Approach
Dimitris Bertsimas
,
David Gamarnik
,
John N. Tsitsiklis
COLT
1997
Estimation of Time-Varying Parameters in Statistical Models: An Optimization Approach
Dimitris Bertsimas
,
David Gamarnik
,
John N. Tsitsiklis