Beygelzimer, Alina

26 publications

JMLR 2021 Improving Reproducibility in Machine Learning Research(A Report from the NeurIPS 2019 Reproducibility Program) Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer, Florence d'Alche-Buc, Emily Fox, Hugo Larochelle
ICML 2019 Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case Alina Beygelzimer, David Pal, Balazs Szorenyi, Devanathan Thiruvenkatachari, Chen-Yu Wei, Chicheng Zhang
COLT 2019 Conference on Learning Theory 2019: Preface Alina Beygelzimer, Daniel Hsu
ICML 2019 Contextual Memory Trees Wen Sun, Alina Beygelzimer, Hal Daumé Iii, John Langford, Paul Mineiro
ICML 2018 A Reductions Approach to Fair Classification Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, Hanna Wallach
ICML 2017 Efficient Online Bandit Multiclass Learning with $\tilde{O}(\sqrt{T})$ Regret Alina Beygelzimer, Francesco Orabona, Chicheng Zhang
IJCAI 2016 Optimal and Adaptive Algorithms for Online Boosting Alina Beygelzimer, Satyen Kale, Haipeng Luo
NeurIPS 2016 Search Improves Label for Active Learning Alina Beygelzimer, Daniel J. Hsu, John Langford, Chicheng Zhang
NeurIPS 2015 Online Gradient Boosting Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo
ICML 2015 Optimal and Adaptive Algorithms for Online Boosting Alina Beygelzimer, Satyen Kale, Haipeng Luo
NeurIPS 2014 Scalable Non-Linear Learning with Adaptive Polynomial Expansions Alekh Agarwal, Alina Beygelzimer, Daniel J. Hsu, John Langford, Matus J Telgarsky
AISTATS 2011 Contextual Bandit Algorithms with Supervised Learning Guarantees Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, Robert Schapire
NeurIPS 2010 Agnostic Active Learning Without Constraints Alina Beygelzimer, Daniel J. Hsu, John Langford, Tong Zhang
UAI 2009 Conditional Probability Tree Estimation Analysis and Algorithms Alina Beygelzimer, John Langford, Yury Lifshits, Gregory B. Sorkin, Alexander L. Strehl
ALT 2009 Error-Correcting Tournaments Alina Beygelzimer, John Langford, Pradeep Ravikumar
ICML 2009 Importance Weighted Active Learning Alina Beygelzimer, Sanjoy Dasgupta, John Langford
ICML 2009 Tutorial Summary: Reductions in Machine Learning Alina Beygelzimer, John Langford, Bianca Zadrozny
MLJ 2008 Robust Reductions from Ranking to Classification Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith, John Langford, Gregory B. Sorkin
COLT 2007 Robust Reductions from Ranking to Classification Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith, John Langford, Gregory B. Sorkin
ICML 2006 Agnostic Active Learning Maria-Florina Balcan, Alina Beygelzimer, John Langford
ICML 2006 Cover Trees for Nearest Neighbor Alina Beygelzimer, Sham M. Kakade, John Langford
UAI 2005 Efficient Test Selection in Active Diagnosis via Entropy Approximation Alice X. Zheng, Irina Rish, Alina Beygelzimer
ICML 2005 Error Limiting Reductions Between Classification Tasks Alina Beygelzimer, Varsha Dani, Thomas P. Hayes, John Langford, Bianca Zadrozny
COLT 2005 Sensitive Error Correcting Output Codes John Langford, Alina Beygelzimer
AAAI 2005 Weighted One-Against-All Alina Beygelzimer, John Langford, Bianca Zadrozny
NeurIPS 2003 Approximability of Probability Distributions Alina Beygelzimer, Irina Rish