Bhaskara, Aditya

29 publications

TMLR 2025 An Efficient Sparse Fine-Tuning with Low Quantization Error via Neural Network Pruning Cen-Jhih Li, Aditya Bhaskara
TMLR 2025 Counting Hours, Counting Losses: The Toll of Unpredictable Work Schedules on Financial Security Pegah Nokhiz, Aravinda Kanchana Ruwanpathirana, Aditya Bhaskara, Suresh Venkatasubramanian
ICLR 2025 Descent with Misaligned Gradients and Applications to Hidden Convexity Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
ICML 2024 Convergence Guarantees for the DeepWalk Embedding on Block Models Christopher Harker, Aditya Bhaskara
NeurIPS 2024 On the Robustness of Spectral Algorithms for Semirandom Stochastic Block Models Aditya Bhaskara, Agastya Vibhuti Jha, Michael Kapralov, Naren Sarayu Manoj, Davide Mazzali, Weronika Wrzos-Kaminska
ICML 2023 Bandit Online Linear Optimization with Hints and Queries Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
AISTATS 2023 Competing Against Adaptive Strategies in Online Learning via Hints Aditya Bhaskara, Kamesh Munagala
AISTATS 2023 Structure of Nonlinear Node Embeddings in Stochastic Block Models Christopher Harker, Aditya Bhaskara
NeurIPS 2023 Tight Bounds for Volumetric Spanners and Applications Aditya Bhaskara, Sepideh Mahabadi, Ali Vakilian
AISTATS 2021 Power of Hints for Online Learning with Movement Costs Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
AISTATS 2021 Principal Component Regression with Semirandom Observations via Matrix Completion Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana, Maheshakya Wijewardena
ICML 2021 Additive Error Guarantees for Weighted Low Rank Approximation Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana, Maheshakya Wijewardena
NeurIPS 2021 Logarithmic Regret from Sublinear Hints Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
NeurIPS 2020 Adaptive Probing Policies for Shortest Path Routing Aditya Bhaskara, Sreenivas Gollapudi, Kostas Kollias, Kamesh Munagala
ICML 2020 Online Learning with Imperfect Hints Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
NeurIPS 2020 Online Linear Optimization with Many Hints Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
NeurIPS 2020 Online MAP Inference of Determinantal Point Processes Aditya Bhaskara, Amin Karbasi, Silvio Lattanzi, Morteza Zadimoghaddam
ALT 2020 Robust Algorithms for Online $k$-Means Clustering Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana
COLT 2019 Approximate Guarantees for Dictionary Learning Aditya Bhaskara, Wai Ming Tai
NeurIPS 2019 Greedy Sampling for Approximate Clustering in the Presence of Outliers Aditya Bhaskara, Sharvaree Vadgama, Hong Xu
NeurIPS 2019 On Distributed Averaging for Stochastic K-PCA Aditya Bhaskara, Pruthuvi Maheshakya Wijewardena
ICML 2018 Distributed Clustering via LSH Based Data Partitioning Aditya Bhaskara, Maheshakya Wijewardena
ICML 2016 Greedy Column Subset Selection: New Bounds and Distributed Algorithms Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin Rostamizadeh, Morteza Zadimoghaddam
NeurIPS 2016 Linear Relaxations for Finding Diverse Elements in Metric Spaces Aditya Bhaskara, Mehrdad Ghadiri, Vahab Mirrokni, Ola Svensson
AISTATS 2015 Sparse Solutions to Nonnegative Linear Systems and Applications Aditya Bhaskara, Ananda Theertha Suresh, Morteza Zadimoghaddam
NeurIPS 2014 Distributed Balanced Clustering via Mapping Coresets Mohammadhossein Bateni, Aditya Bhaskara, Silvio Lattanzi, Vahab Mirrokni
COLT 2014 Open Problem: Tensor Decompositions: Algorithms up to the Uniqueness Threshold? Aditya Bhaskara, Moses Charikar, Ankur Moitra, Aravindan Vijayaraghavan
ICML 2014 Provable Bounds for Learning Some Deep Representations Sanjeev Arora, Aditya Bhaskara, Rong Ge, Tengyu Ma
COLT 2014 Uniqueness of Tensor Decompositions with Applications to Polynomial Identifiability Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan