ML Anthology
Authors
Search
About
Bhattacharyya, Arnab
32 publications
AISTATS
2025
Approximating the Total Variation Distance Between Gaussians
Arnab Bhattacharyya
,
Weiming Feng
,
Piyush Srivastava
ICLR
2025
Computational Explorations of Total Variation Distance
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S. Meel
,
Dimitrios Myrisiotis
,
A. Pavan
,
N. V. Vinodchandran
NeurIPS
2025
Distribution Learning Meets Graph Structure Sampling
Arnab Bhattacharyya
,
Sutanu Gayen
,
Philips George John
,
Sayantan Sen
,
N. V. Vinodchandran
AAAI
2025
Learnability of Parameter-Bounded Bayes Nets
Arnab Bhattacharyya
,
Davin Choo
,
Sutanu Gayen
,
Dimitrios Myrisiotis
AISTATS
2025
Learning High-Dimensional Gaussians from Censored Data
Arnab Bhattacharyya
,
Constantinos Costis Daskalakis
,
Themis Gouleakis
,
Yuhao Wang
ICML
2025
Learning Multivariate Gaussians with Imperfect Advice
Arnab Bhattacharyya
,
Davin Choo
,
Philips George John
,
Themis Gouleakis
CLeaR
2025
Probably Approximately Correct High-Dimensional Causal Effect Estimation Given a Valid Adjustment Set
Davin Choo
,
Chandler Squires
,
Arnab Bhattacharyya
,
David Sontag
NeurIPS
2025
Product Distribution Learning with Imperfect Advice
Arnab Bhattacharyya
,
Davin Choo
,
Philips George John
,
Themis Gouleakis
ICMLW
2024
Learnability of Parameter-Bounded Bayes Nets
Arnab Bhattacharyya
,
Davin Choo
,
Sutanu Gayen
,
Dimitrios Myrisiotis
ALT
2024
Learning Bounded-Degree Polytrees with Known Skeleton
Davin Choo
,
Joy Qiping Yang
,
Arnab Bhattacharyya
,
Clément L Canonne
ICML
2024
Online Bipartite Matching with Imperfect Advice
Davin Choo
,
Themistoklis Gouleakis
,
Chun Kai Ling
,
Arnab Bhattacharyya
AISTATS
2024
Optimal Estimation of Gaussian (poly)trees
Yuhao Wang
,
Ming Gao
,
Wai Ming Tai
,
Bryon Aragam
,
Arnab Bhattacharyya
ICML
2024
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S. Meel
,
Dimitrios Myrisiotis
,
A. Pavan
,
N. V. Vinodchandran
ICML
2023
Active Causal Structure Learning with Advice
Davin Choo
,
Themistoklis Gouleakis
,
Arnab Bhattacharyya
AAAI
2023
Constraint Optimization over Semirings
Aduri Pavan
,
Kuldeep S. Meel
,
N. V. Vinodchandran
,
Arnab Bhattacharyya
IJCAI
2023
On Approximating Total Variation Distance
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S. Meel
,
Dimitrios Myrisiotis
,
A. Pavan
,
N. V. Vinodchandran
CLeaR
2023
On the Interventional Kullback-Leibler Divergence
Jonas Bernhard Wildberger
,
Siyuan Guo
,
Arnab Bhattacharyya
,
Bernhard Schölkopf
AISTATS
2023
Sample Complexity of Distinguishing Cause from Effect
Jayadev Acharya
,
Sourbh Bhadane
,
Arnab Bhattacharyya
,
Saravanan Kandasamy
,
Ziteng Sun
AISTATS
2022
Efficient Interventional Distribution Learning in the PAC Framework
Arnab Bhattacharyya
,
Sutanu Gayen
,
Saravanan Kandasamy
,
Vedant Raval
,
Vinodchandran N. Variyam
AISTATS
2022
Learning Sparse Fixed-Structure Gaussian Bayesian Networks
Arnab Bhattacharyya
,
Davin Choo
,
Rishikesh Gajjala
,
Sutanu Gayen
,
Yuhao Wang
NeurIPS
2022
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects
Thanh Vinh Vo
,
Arnab Bhattacharyya
,
Young Lee
,
Tze-Yun Leong
AAAI
2022
Identifiability of Linear AMP Chain Graph Models
Yuhao Wang
,
Arnab Bhattacharyya
NeurIPS
2022
Independence Testing for Bounded Degree Bayesian Networks
Arnab Bhattacharyya
,
Clément L Canonne
,
Qiping Yang
NeurIPS
2022
Verification and Search Algorithms for Causal DAGs
Davin Choo
,
Kirankumar Shiragur
,
Arnab Bhattacharyya
AISTATS
2021
Efficient Statistics for Sparse Graphical Models from Truncated Samples
Arnab Bhattacharyya
,
Rathin Desai
,
Sai Ganesh Nagarajan
,
Ioannis Panageas
ALT
2021
Testing Product Distributions: A Closer Look
Arnab Bhattacharyya
,
Sutanu Gayen
,
Saravanan Kandasamy
,
N. V. Vinodchandran
NeurIPS
2020
Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S Meel
,
N. V. Vinodchandran
ICML
2020
Learning and Sampling of Atomic Interventions from Observations
Arnab Bhattacharyya
,
Sutanu Gayen
,
Saravanan Kandasamy
,
Ashwin Maran
,
Vinodchandran N. Variyam
AAAI
2019
Minimum Intervention Cover of a Causal Graph
Saravanan Kandasamy
,
Arnab Bhattacharyya
,
Vasant G. Honavar
COLT
2018
Hardness of Learning Noisy Halfspaces Using Polynomial Thresholds
Arnab Bhattacharyya
,
Suprovat Ghoshal
,
Rishi Saket
NeurIPS
2018
Learning and Testing Causal Models with Interventions
Jayadev Acharya
,
Arnab Bhattacharyya
,
Constantinos Daskalakis
,
Saravanan Kandasamy
ICML
2018
Testing Sparsity over Known and Unknown Bases
Siddharth Barman
,
Arnab Bhattacharyya
,
Suprovat Ghoshal