ML Anthology
Authors
Search
About
Bie, Alex
12 publications
NeurIPS
2025
Escaping Collapse: The Strength of Weak Data for Large Language Model Training
Kareem Amin
,
Sara Babakniya
,
Alex Bie
,
Weiwei Kong
,
Umar Syed
,
Sergei Vassilvitskii
ICLRW
2025
Escaping Collapse: The Strength of Weak Data for Large Language Model Training
Kareem Amin
,
Sara Babakniya
,
Alex Bie
,
Weiwei Kong
,
Umar Syed
,
Sergei Vassilvitskii
TMLR
2025
Foundation Models Meet Federated Learning: A One-Shot Feature-Sharing Method with Privacy and Performance Guarantees
Mahdi Beitollahi
,
Alex Bie
,
Sobhan Hemati
,
Leo Maxime Brunswic
,
Xu Li
,
Xi Chen
,
Guojun Zhang
ICML
2025
On the Learnability of Distribution Classes with Adaptive Adversaries
Tosca Lechner
,
Alex Bie
,
Gautam Kamath
NeurIPSW
2024
RenderAttack: Hundreds of Adversarial Attacks Through Differentiable Texture Generation
Dron Hazra
,
Alex Bie
,
Mantas Mazeika
,
Xuwang Yin
,
Andy Zou
,
Dan Hendrycks
,
Maximilian Kaufmann
TMLR
2024
Understanding the Role of Layer Normalization in Label-Skewed Federated Learning
Guojun Zhang
,
Mahdi Beitollahi
,
Alex Bie
,
Xi Chen
NeurIPS
2023
Distribution Learnability and Robustness
Shai Ben-David
,
Alex Bie
,
Gautam Kamath
,
Tosca Lechner
NeurIPS
2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
,
Alex Bie
,
Clément L Canonne
,
Gautam Kamath
,
Vikrant Singhal
TMLR
2023
Private GANs, Revisited
Alex Bie
,
Gautam Kamath
,
Guojun Zhang
NeurIPS
2022
Private Estimation with Public Data
Alex Bie
,
Gautam Kamath
,
Vikrant Singhal
NeurIPSW
2022
Private GANs, Revisited
Alex Bie
,
Gautam Kamath
,
Guojun Zhang
NeurIPS
2021
Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
,
Alex Bie
,
Arash Vahdat
,
Sanja Fidler
,
Karsten Kreis