Bindel, David

15 publications

ICML 2025 Stochastic Poisson Surface Reconstruction with One Solve Using Geometric Gaussian Processes Sidhanth Holalkere, David Bindel, Silvia Sellán, Alexander Terenin
TMLR 2023 Bayesian Transformed Gaussian Processes Xinran Zhu, Leo Huang, Eric Hans Lee, Cameron Alexander Ibrahim, David Bindel
AISTATS 2023 Surveillance Evasion Through Bayesian Reinforcement Learning Dongping Qi, David Bindel, Alexander Vladimirsky
NeurIPS 2023 Variational Gaussian Processes with Decoupled Conditionals Xinran Zhu, Kaiwen Wu, Natalie Maus, Jacob Gardner, David Bindel
ICML 2021 On-the-Fly Rectification for Robust Large-Vocabulary Topic Inference Moontae Lee, Sungjun Cho, Kun Dong, David Mimno, David Bindel
NeurIPS 2021 Scaling Gaussian Processes with Derivative Information Using Variational Inference Misha Padidar, Xinran Zhu, Leo Huang, Jacob Gardner, David Bindel
UAI 2020 Efficient Rollout Strategies for Bayesian Optimization Eric Lee, David Eriksson, David Bindel, Bolong Cheng, Mike Mccourt
AISTATS 2020 Prior-Aware Composition Inference for Spectral Topic Models Moontae Lee, David Bindel, David Mimno
ICML 2020 Randomly Projected Additive Gaussian Processes for Regression Ian Delbridge, David Bindel, Andrew Gordon Wilson
NeurIPS 2018 GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, Andrew G Wilson
NeurIPS 2018 Scaling Gaussian Process Regression with Derivatives David Eriksson, Kun Dong, Eric Lee, David Bindel, Andrew G Wilson
ECML-PKDD 2017 Local Lanczos Spectral Approximation for Community Detection Pan Shi, Kun He, David Bindel, John E. Hopcroft
NeurIPS 2017 Scalable Log Determinants for Gaussian Process Kernel Learning Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, Andrew G Wilson
ECCV 2016 When Is Rotations Averaging Hard? Kyle Wilson, David Bindel, Noah Snavely
NeurIPS 2015 Robust Spectral Inference for Joint Stochastic Matrix Factorization Moontae Lee, David Bindel, David Mimno