ML Anthology
Authors
Search
About
Bishop, Christopher M.
29 publications
ECML-PKDD
2014
Students, Teachers, Exams and MOOCs: Predicting and Optimizing Attainment in Web-Based Education Using a Probabilistic Graphical Model
Bar Shalem
,
Yoram Bachrach
,
John Guiver
,
Christopher M. Bishop
AISTATS
2013
Structural Expectation Propagation (SEP): Bayesian Structure Learning for Networks with Latent Variables
Nevena Lazic
,
Christopher M. Bishop
,
John M. Winn
ECML-PKDD
2011
Embracing Uncertainty: Applied Machine Learning Comes of Age
Christopher M. Bishop
CVPR
2006
Principled Hybrids of Generative and Discriminative Models
Julia A. Lasserre
,
Christopher M. Bishop
,
Thomas P. Minka
CVPR
2005
Generative Versus Discriminative Methods for Object Recognition
Ilkay Ulusoy
,
Christopher M. Bishop
JMLR
2005
Variational Message Passing
John Winn
,
Christopher M. Bishop
UAI
2003
Bayesian Hierarchical Mixtures of Experts
Christopher M. Bishop
,
Markus Svensén
AISTATS
2003
Structured Variational Distributions in VIBES
Christopher M. Bishop
,
John M. Winn
AISTATS
2003
Super-Resolution Enhancement of Video
Christopher M. Bishop
,
Andrew Blake
,
Bhaskara Marthi
NeurIPS
2002
Bayesian Image Super-Resolution
Michael E. Tipping
,
Christopher M. Bishop
NeurIPS
2002
VIBES: A Variational Inference Engine for Bayesian Networks
Christopher M. Bishop
,
David Spiegelhalter
,
John Winn
AISTATS
2001
Hyperparameters for Soft Bayesian Model Selection
Adrian Corduneanu
,
Christopher M. Bishop
NeurIPS
2001
Optimising Synchronisation Times for Mobile Devices
Neil D. Lawrence
,
Antony I. T. Rowstron
,
Christopher M. Bishop
,
Michael J. Taylor
ECCV
2000
Non-Linear Bayesian Image Modelling
Christopher M. Bishop
,
John M. Winn
UAI
2000
Variational Relevance Vector Machines
Christopher M. Bishop
,
Michael E. Tipping
NeCo
1999
Mixtures of Probabilistic Principal Component Analysers
Michael E. Tipping
,
Christopher M. Bishop
NeurIPS
1998
Bayesian PCA
Christopher M. Bishop
NeCo
1998
GTM: The Generative Topographic Mapping
Christopher M. Bishop
,
Markus Svensén
,
Christopher K. I. Williams
UAI
1998
Mixture Representations for Inference and Learning in Boltzmann Machines
Neil D. Lawrence
,
Christopher M. Bishop
,
Michael I. Jordan
NeurIPS
1997
Approximating Posterior Distributions in Belief Networks Using Mixtures
Christopher M. Bishop
,
Neil D. Lawrence
,
Tommi Jaakkola
,
Michael I. Jordan
NeurIPS
1997
Ensemble Learning for Multi-Layer Networks
David Barber
,
Christopher M. Bishop
NeurIPS
1997
Regression with Input-Dependent Noise: A Gaussian Process Treatment
Paul W. Goldberg
,
Christopher K. I. Williams
,
Christopher M. Bishop
NeurIPS
1996
Bayesian Model Comparison by Monte Carlo Chaining
David Barber
,
Christopher M. Bishop
NeurIPS
1996
GTM: A Principled Alternative to the Self-Organizing mAP
Christopher M. Bishop
,
Markus Svensén
,
Christopher K. I. Williams
NeCo
1996
Modeling Conditional Probability Distributions for Periodic Variables
Christopher M. Bishop
,
Ian T. Nabney
NeurIPS
1996
Regression with Input-Dependent Noise: A Bayesian Treatment
Christopher M. Bishop
,
Cazhaow S. Quazaz
NeurIPS
1995
EM Optimization of Latent-Variable Density Models
Christopher M. Bishop
,
Markus Svensén
,
Christopher K. I. Williams
NeCo
1995
Real-Time Control of a Tokamak Plasma Using Neural Networks
Christopher M. Bishop
,
Paul S. Haynes
,
Mike E. U. Smith
,
Tom N. Todd
,
David L. Trotman
NeCo
1995
Training with Noise Is Equivalent to Tikhonov Regularization
Christopher M. Bishop