Blunsom, Phil

32 publications

NeurIPS 2025 Rope to Nope and Back Again: A New Hybrid Attention Strategy Bowen Yang, Bharat Venkitesh, Dwaraknath Gnaneshwar, Hangyu Lin, David Cairuz, Phil Blunsom, Acyr Locatelli
ICLRW 2025 Uncertainty-Aware Step-Wise Verification with Generative Reward Models Zihuiwen Ye, Luckeciano Carvalho Melo, Younesse Kaddar, Phil Blunsom, Sam Staton, Yarin Gal
NeurIPS 2024 BAM! Just like That: Simple and Efficient Parameter Upcycling for Mixture of Experts Qizhen Zhang, Nikolas Gritsch, Dwaraknath Gnaneshwar, Simon Guo, David Cairuz, Bharat Venkitesh, Jakob Foerster, Phil Blunsom, Sebastian Ruder, Ahmet Üstün, Acyr Locatelli
ICMLW 2024 BAM! Just like That: Simple and Efficient Parameter Upcycling for Mixture of Experts Qizhen Zhang, Nikolas Gritsch, Dwaraknath Gnaneshwar, Simon Guo, David Cairuz, Bharat Venkitesh, Jakob Nicolaus Foerster, Phil Blunsom, Sebastian Ruder, Ahmet Üstün, Acyr Locatelli
ICLR 2024 Human Feedback Is Not Gold Standard Tom Hosking, Phil Blunsom, Max Bartolo
NeurIPS 2024 Separations in the Representational Capabilities of Transformers and Recurrent Architectures Satwik Bhattamishra, Michael Hahn, Phil Blunsom, Varun Kanade
ICLR 2024 Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions Satwik Bhattamishra, Arkil Patel, Phil Blunsom, Varun Kanade
NeurIPS 2023 Intriguing Properties of Quantization at Scale Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Zhen Stephen Gou, Phil Blunsom, Ahmet Üstün, Sara Hooker
NeurIPSW 2023 Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions Satwik Bhattamishra, Arkil Patel, Phil Blunsom, Varun Kanade
JMLR 2022 Mutual Information Constraints for Monte-Carlo Objectives to Prevent Posterior Collapse Especially in Language Modelling Gábor Melis, András György, Phil Blunsom
ICML 2022 StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models Adam Liska, Tomas Kocisky, Elena Gribovskaya, Tayfun Terzi, Eren Sezener, Devang Agrawal, Cyprien De Masson D’Autume, Tim Scholtes, Manzil Zaheer, Susannah Young, Ellen Gilsenan-Mcmahon, Sophia Austin, Phil Blunsom, Angeliki Lazaridou
NeurIPS 2021 Mind the Gap: Assessing Temporal Generalization in Neural Language Models Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d'Autume, Tomas Kocisky, Sebastian Ruder, Dani Yogatama, Kris Cao, Susannah Young, Phil Blunsom
ICLR 2020 Mogrifier LSTM Gábor Melis, Tomáš Kočiský, Phil Blunsom
AAAI 2019 MotionTransformer: Transferring Neural Inertial Tracking Between Domains Changhao Chen, Yishu Miao, Chris Xiaoxuan Lu, Linhai Xie, Phil Blunsom, Andrew Markham, Niki Trigoni
NeurIPS 2018 E-SNLI: Natural Language Inference with Natural Language Explanations Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, Phil Blunsom
ICLR 2018 Memory Architectures in Recurrent Neural Network Language Models Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling, Adhiguna Kuncoro, Chris Dyer, Phil Blunsom
NeurIPS 2018 Neural Arithmetic Logic Units Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, Phil Blunsom
ICLR 2018 On the State of the Art of Evaluation in Neural Language Models Gábor Melis, Chris Dyer, Phil Blunsom
ICML 2017 Discovering Discrete Latent Topics with Neural Variational Inference Yishu Miao, Edward Grefenstette, Phil Blunsom
ICML 2017 Latent Intention Dialogue Models Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, Steve Young
ICLR 2017 Learning to Compose Words into Sentences with Reinforcement Learning Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling
ICLR 2017 The Neural Noisy Channel Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefenstette, Tomás Kociský
ICML 2016 Neural Variational Inference for Text Processing Yishu Miao, Lei Yu, Phil Blunsom
ICLR 2016 Reasoning About Entailment with Neural Attention Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, Phil Blunsom
NeurIPS 2015 Learning to Transduce with Unbounded Memory Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Phil Blunsom
NeurIPS 2015 Teaching Machines to Read and Comprehend Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom
ICLR 2014 A Simple Model for Learning Multilingual Compositional Semantics Karl Moritz Hermann, Phil Blunsom
ICML 2014 Compositional Morphology for Word Representations and Language Modelling Jan Botha, Phil Blunsom
AISTATS 2013 Collapsed Variational Bayesian Inference for Hidden Markov Models Pengyu Wang, Phil Blunsom
ECML-PKDD 2012 Unsupervised Bayesian Part of Speech Inference with Particle Gibbs Gregory Dubbin, Phil Blunsom
JMLR 2010 Inducing Tree-Substitution Grammars Trevor Cohn, Phil Blunsom, Sharon Goldwater
NeurIPS 2008 Bayesian Synchronous Grammar Induction Phil Blunsom, Trevor Cohn, Miles Osborne