ML Anthology
Authors
Search
About
Bojchevski, Aleksandar
34 publications
ICLRW
2025
Kurtail : Kurtosis-Based LLM Quantization
Mohammad Sadegh Akhondzadeh
,
Aleksandar Bojchevski
,
Evangelos Eleftheriou
,
Martino Dazzi
TMLR
2025
Node-Level Data Valuation on Graphs
Simone Antonelli
,
Aleksandar Bojchevski
NeurIPS
2025
One Sample Is Enough to Make Conformal Prediction Robust
Soroush H. Zargarbashi
,
Mohammad Sadegh Akhondzadeh
,
Aleksandar Bojchevski
ICLR
2025
Robust Conformal Prediction with a Single Binary Certificate
Soroush H. Zargarbashi
,
Aleksandar Bojchevski
ICLR
2024
Conformal Inductive Graph Neural Networks
Soroush H. Zargarbashi
,
Aleksandar Bojchevski
ICLR
2024
Rethinking Label Poisoning for GNNs: Pitfalls and Attacks
Vijay Lingam
,
Mohammad Sadegh Akhondzadeh
,
Aleksandar Bojchevski
ICML
2024
Robust yet Efficient Conformal Prediction Sets
Soroush H. Zargarbashi
,
Mohammad Sadegh Akhondzadeh
,
Aleksandar Bojchevski
NeurIPS
2024
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Vijay Lingam
,
Atula Tejaswi
,
Aditya Vavre
,
Aneesh Shetty
,
Gautham Krishna Gudur
,
Joydeep Ghosh
,
Alex Dimakis
,
Eunsol Choi
,
Aleksandar Bojchevski
,
Sujay Sanghavi
ICMLW
2024
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Vijay Lingam
,
Atula Tejaswi Neerkaje
,
Aditya Vavre
,
Aneesh Shetty
,
Gautham Krishna Gudur
,
Joydeep Ghosh
,
Alex Dimakis
,
Eunsol Choi
,
Aleksandar Bojchevski
,
Sujay Sanghavi
ICMLW
2024
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Vijay Lingam
,
Atula Tejaswi Neerkaje
,
Aditya Vavre
,
Aneesh Shetty
,
Gautham Krishna Gudur
,
Joydeep Ghosh
,
Eunsol Choi
,
Alex Dimakis
,
Aleksandar Bojchevski
,
Sujay Sanghavi
NeurIPSW
2024
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Vijay Lingam
,
Atula Tejaswi
,
Aditya Vavre
,
Aneesh Shetty
,
Gautham Krishna Gudur
,
Joydeep Ghosh
,
Alex Dimakis
,
Eunsol Choi
,
Aleksandar Bojchevski
,
Sujay Sanghavi
AAAI
2023
Adversarial Weight Perturbation Improves Generalization in Graph Neural Networks
Yihan Wu
,
Aleksandar Bojchevski
,
Heng Huang
NeurIPS
2023
Are GATs Out of Balance?
Nimrah Mustafa
,
Aleksandar Bojchevski
,
Rebekka Burkholz
ICML
2023
Conformal Prediction Sets for Graph Neural Networks
Soroush H. Zargarbashi
,
Simone Antonelli
,
Aleksandar Bojchevski
NeurIPS
2023
Hierarchical Randomized Smoothing
Yan Scholten
,
Jan Schuchardt
,
Aleksandar Bojchevski
,
Stephan Günnemann
ICLR
2023
Localized Randomized Smoothing for Collective Robustness Certification
Jan Schuchardt
,
Tom Wollschläger
,
Aleksandar Bojchevski
,
Stephan Günnemann
ICLRW
2023
Pitfalls in Evaluating GNNs Under Label Poisoning Attacks
Vijay Lingam
,
Mohammad Sadegh Akhondzadeh
,
Aleksandar Bojchevski
AISTATS
2023
Probing Graph Representations
Mohammad Sadegh Akhondzadeh
,
Vijay Lingam
,
Aleksandar Bojchevski
ICLRW
2023
Probing Graph Representations
Mohammad Sadegh Akhondzadeh
,
Vijay Lingam
,
Aleksandar Bojchevski
ICMLW
2023
Rethinking Label Poisoning for GNNs: Pitfalls and Attacks
Vijay Lingam
,
Mohammad Sadegh Akhondzadeh
,
Aleksandar Bojchevski
ICLR
2023
Unveiling the Sampling Density in Non-Uniform Geometric Graphs
Raffaele Paolino
,
Aleksandar Bojchevski
,
Stephan Günnemann
,
Gitta Kutyniok
,
Ron Levie
NeurIPS
2022
Are Defenses for Graph Neural Networks Robust?
Felix Mujkanovic
,
Simon Geisler
,
Stephan Günnemann
,
Aleksandar Bojchevski
ICLR
2022
Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness
Simon Geisler
,
Johanna Sommer
,
Jan Schuchardt
,
Aleksandar Bojchevski
,
Stephan Günnemann
NeurIPS
2022
Randomized Message-Interception Smoothing: Gray-Box Certificates for Graph Neural Networks
Yan Scholten
,
Jan Schuchardt
,
Simon Geisler
,
Aleksandar Bojchevski
,
Stephan Günnemann
AISTATS
2021
Completing the Picture: Randomized Smoothing Suffers from the Curse of Dimensionality for a Large Family of Distributions
Yihan Wu
,
Aleksandar Bojchevski
,
Aleksei Kuvshinov
,
Stephan Günnemann
ICLR
2021
Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks
Jan Schuchardt
,
Aleksandar Bojchevski
,
Johannes Gasteiger
,
Stephan Günnemann
NeurIPS
2021
Robustness of Graph Neural Networks at Scale
Simon Geisler
,
Tobias Schmidt
,
Hakan Şirin
,
Daniel Zügner
,
Aleksandar Bojchevski
,
Stephan Günnemann
ICML
2020
Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More
Aleksandar Bojchevski
,
Johannes Gasteiger
,
Stephan Günnemann
ICML
2019
Adversarial Attacks on Node Embeddings via Graph Poisoning
Aleksandar Bojchevski
,
Stephan Günnemann
NeurIPS
2019
Certifiable Robustness to Graph Perturbations
Aleksandar Bojchevski
,
Stephan Günnemann
ICLR
2019
Predict Then Propagate: Graph Neural Networks Meet Personalized PageRank
Johannes Gasteiger
,
Aleksandar Bojchevski
,
Stephan Günnemann
AAAI
2018
Bayesian Robust Attributed Graph Clustering: Joint Learning of Partial Anomalies and Group Structure
Aleksandar Bojchevski
,
Stephan Günnemann
ICLR
2018
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
Aleksandar Bojchevski
,
Stephan Günnemann
ICML
2018
NetGAN: Generating Graphs via Random Walks
Aleksandar Bojchevski
,
Oleksandr Shchur
,
Daniel Zügner
,
Stephan Günnemann