ML Anthology
Authors
Search
About
Boratko, Michael
10 publications
ICML
2025
A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings
Shib Sankar Dasgupta
,
Michael Boratko
,
Andrew Mccallum
ICML
2024
A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks
Nicholas Monath
,
Will Sussman Grathwohl
,
Michael Boratko
,
Rob Fergus
,
Andrew Mccallum
,
Manzil Zaheer
NeurIPS
2024
Learning Representations for Hierarchies with Minimal Support
Benjamin Rozonoyer
,
Michael Boratko
,
Dhruvesh Patel
,
Wenlong Zhao
,
Shib Dasgupta
,
Hung Le
,
Andrew McCallum
AAAI
2022
An Evaluative Measure of Clustering Methods Incorporating Hyperparameter Sensitivity
Siddhartha Mishra
,
Nicholas Monath
,
Michael Boratko
,
Ariel Kobren
,
Andrew McCallum
ICLR
2022
Modeling Label Space Interactions in Multi-Label Classification Using Box Embeddings
Dhruvesh Patel
,
Pavitra Dangati
,
Jay-Yoon Lee
,
Michael Boratko
,
Andrew McCallum
NeurIPS
2022
Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings
Dongxu Zhang
,
Michael Boratko
,
Cameron Musco
,
Andrew McCallum
NeurIPS
2021
Capacity and Bias of Learned Geometric Embeddings for Directed Graphs
Michael Boratko
,
Dongxu Zhang
,
Nicholas Monath
,
Luke Vilnis
,
Kenneth L Clarkson
,
Andrew McCallum
UAI
2021
Min/max Stability and Box Distributions
Michael Boratko
,
Javier Burroni
,
Shib Sankar Dasgupta
,
Andrew McCallum
NeurIPS
2020
Improving Local Identifiability in Probabilistic Box Embeddings
Shib Dasgupta
,
Michael Boratko
,
Dongxu Zhang
,
Luke Vilnis
,
Xiang Li
,
Andrew McCallum
ICLR
2019
Smoothing the Geometry of Probabilistic Box Embeddings
Xiang Li
,
Luke Vilnis
,
Dongxu Zhang
,
Michael Boratko
,
Andrew McCallum