Bose, Joey

23 publications

NeurIPS 2025 Curly Flow Matching for Learning Non-Gradient Field Dynamics Katarina Petrović, Lazar Atanackovic, Viggo Moro, Kacper Kapuśniak, Ismail Ilkan Ceylan, Michael M. Bronstein, Joey Bose, Alexander Tong
ICLRW 2025 Curly Flow Matching for Learning Non-Gradient Field Dynamics Katarina Petrović, Lazar Atanackovic, Kacper Kapuśniak, Michael M. Bronstein, Joey Bose, Alexander Tong
ICLRW 2025 Curly Flow Matching for Learning Non-Gradient Field Dynamics Katarina Petrović, Lazar Atanackovic, Kacper Kapusniak, Michael M. Bronstein, Joey Bose, Alexander Tong
NeurIPS 2025 Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities Tara Akhound-Sadegh, Jungyoon Lee, Joey Bose, Valentin De Bortoli, Arnaud Doucet, Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, Alexander Tong
NeurIPS 2025 RETRO SYNFLOW: Discrete Flow-Matching for Accurate and Diverse Single-Step Retrosynthesis Robin Yadav, Qi Yan, Guy Wolf, Joey Bose, Renjie Liao
ICLRW 2025 SOAPI: Siamese-Guided Generation of Off-Target-Avoiding Protein Interactions Sophia Vincoff, Oscar Davis, Alexander Tong, Joey Bose, Pranam Chatterjee
ICML 2025 Scalable Equilibrium Sampling with Sequential Boltzmann Generators Charlie B. Tan, Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, Alexander Tong
ICLRW 2025 Scalable Equilibrium Sampling with Sequential Boltzmann Generators Charlie B. Tan, Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, Alexander Tong
ICLR 2025 Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Cheng-Hao Liu, Sarthak Mittal, Nouha Dziri, Michael M. Bronstein, Pranam Chatterjee, Alexander Tong, Joey Bose
ICLR 2025 The Superposition of Diffusion Models Using the Itô Density Estimator Marta Skreta, Lazar Atanackovic, Joey Bose, Alexander Tong, Kirill Neklyudov
ICML 2024 Iterated Denoising Energy Matching for Sampling from Boltzmann Densities Tara Akhound-Sadegh, Jarrid Rector-Brooks, Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong
ICLR 2024 On the Stability of Iterative Retraining of Generative Models on Their Own Data Quentin Bertrand, Joey Bose, Alexandre Duplessis, Marco Jiralerspong, Gauthier Gidel
ICLR 2024 SE(3)-Stochastic Flow Matching for Protein Backbone Generation Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, Alexander Tong
ICLR 2023 A General Framework for Proving the Equivariant Strong Lottery Ticket Hypothesis Damien Ferbach, Christos Tsirigotis, Gauthier Gidel, Joey Bose
NeurIPS 2023 EDGI: Equivariant Diffusion for Planning with Embodied Agents Johann Brehmer, Joey Bose, Pim de Haan, Taco S Cohen
ICLRW 2023 EDGI: Equivariant Diffusion for Planning with Embodied Agents Johann Brehmer, Joey Bose, Pim De Haan, Taco Cohen
NeurIPS 2023 Feature Likelihood Divergence: Evaluating the Generalization of Generative Models Using Samples Marco Jiralerspong, Joey Bose, Ian Gemp, Chongli Qin, Yoram Bachrach, Gauthier Gidel
TMLR 2022 Controllable Generative Modeling via Causal Reasoning Joey Bose, Ricardo Pio Monti, Aditya Grover
ICML 2022 Matching Normalizing Flows and Probability Paths on Manifolds Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover, Ricky T. Q. Chen, Yaron Lipman
ICLR 2022 Online Adversarial Attacks Andjela Mladenovic, Joey Bose, Hugo Berard, William L. Hamilton, Simon Lacoste-Julien, Pascal Vincent, Gauthier Gidel
NeurIPS 2022 Riemannian Diffusion Models Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, Aaron C. Courville
NeurIPS 2020 Adversarial Example Games Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, Will Hamilton
ICML 2020 Latent Variable Modelling with Hyperbolic Normalizing Flows Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, Will Hamilton