Bouchacourt, Diane

23 publications

ICLR 2025 $\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs Vlad Sobal, Mark Ibrahim, Randall Balestriero, Vivien Cabannes, Diane Bouchacourt, Pietro Astolfi, Kyunghyun Cho, Yann LeCun
ICMLW 2024 $\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs Vlad Sobal, Mark Ibrahim, Randall Balestriero, Vivien Cabannes, Diane Bouchacourt, Pietro Astolfi, Kyunghyun Cho, Yann LeCun
NeurIPSW 2024 $\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs Vlad Sobal, Mark Ibrahim, Randall Balestriero, Vivien Cabannes, Diane Bouchacourt, Pietro Astolfi, Kyunghyun Cho, Yann LeCun
ICML 2024 Discovering Environments with XRM Mohammad Pezeshki, Diane Bouchacourt, Mark Ibrahim, Nicolas Ballas, Pascal Vincent, David Lopez-Paz
ICLR 2024 Does Progress on Object Recognition Benchmarks Improve Generalization on Crowdsourced, Global Data? Megan Richards, Polina Kirichenko, Diane Bouchacourt, Mark Ibrahim
NeurIPS 2024 The Factorization Curse: Which Tokens You Predict Underlie the Reversal Curse and More Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, Mark Ibrahim
NeurIPS 2024 UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
NeurIPS 2023 Birth of a Transformer: A Memory Viewpoint Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, Leon Bottou
NeurIPSW 2023 Discovering Environments with XRM Mohammad Pezeshki, Diane Bouchacourt, Mark Ibrahim, Nicolas Ballas, Pascal Vincent, David Lopez-Paz
ICLR 2023 Disentanglement of Correlated Factors via Hausdorff Factorized Support Karsten Roth, Mark Ibrahim, Zeynep Akata, Pascal Vincent, Diane Bouchacourt
NeurIPS 2023 Exploring Why Object Recognition Performance Degrades Across Income Levels and Geographies with Factor Annotations Laura Gustafson, Megan Richards, Melissa Hall, Caner Hazirbas, Diane Bouchacourt, Mark Ibrahim
ICLR 2023 ImageNet-X: Understanding Model Mistakes with Factor of Variation Annotations Badr Youbi Idrissi, Diane Bouchacourt, Randall Balestriero, Ivan Evtimov, Caner Hazirbas, Nicolas Ballas, Pascal Vincent, Michal Drozdzal, David Lopez-Paz, Mark Ibrahim
NeurIPS 2023 PUG: Photorealistic and Semantically Controllable Synthetic Data for Representation Learning Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, Ari Morcos
NeurIPSW 2023 Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations Cian Eastwood, Julius von Kügelgen, Linus Ericsson, Diane Bouchacourt, Pascal Vincent, Mark Ibrahim, Bernhard Schölkopf
TMLR 2023 The Robustness Limits of SoTA Vision Models to Natural Variation Mark Ibrahim, Quentin Garrido, Ari S. Morcos, Diane Bouchacourt
NeurIPS 2023 Understanding the Detrimental Class-Level Effects of Data Augmentation Polina Kirichenko, Mark Ibrahim, Randall Balestriero, Diane Bouchacourt, Shanmukha Ramakrishna Vedantam, Hamed Firooz, Andrew G Wilson
NeurIPS 2021 Grounding Inductive Biases in Natural Images: Invariance Stems from Variations in Data Diane Bouchacourt, Mark Ibrahim, Ari Morcos
NeurIPS 2020 A Benchmark for Systematic Generalization in Grounded Language Understanding Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, Brenden M Lake
ICML 2020 Entropy Minimization in Emergent Languages Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, Marco Baroni
ICLR 2020 Permutation Equivariant Models for Compositional Generalization in Language Jonathan Gordon, David Lopez-Paz, Marco Baroni, Diane Bouchacourt
AAAI 2018 Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations Diane Bouchacourt, Ryota Tomioka, Sebastian Nowozin
NeurIPS 2016 DISCO Nets : DISsimilarity COefficients Networks Diane Bouchacourt, Pawan K Mudigonda, Sebastian Nowozin
ICCV 2015 Entropy-Based Latent Structured Output Prediction Diane Bouchacourt, Sebastian Nowozin, M. Pawan Kumar