ML Anthology
Authors
Search
About
Boyd, Stephen
14 publications
L4DC
2025
Informative Input Design for Dynamic Mode Decomposition
Joshua Ott
,
Mykel Kochenderfer
,
Stephen Boyd
JMLR
2021
A Distributed Method for Fitting Laplacian Regularized Stratified Models
Jonathan Tuck
,
Shane Barratt
,
Stephen Boyd
L4DC
2020
Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint
Malayandi Palan
,
Shane Barratt
,
Alex McCauley
,
Dorsa Sadigh
,
Vikas Sindhwani
,
Stephen Boyd
L4DC
2020
Learning Convex Optimization Control Policies
Akshay Agrawal
,
Shane Barratt
,
Stephen Boyd
,
Bartolomeo Stellato
NeurIPS
2019
Differentiable Convex Optimization Layers
Akshay Agrawal
,
Brandon Amos
,
Shane Barratt
,
Stephen Boyd
,
Steven Diamond
,
J. Zico Kolter
MLOSS
2017
SnapVX: A Network-Based Convex Optimization Solver
David Hallac
,
Christopher Wong
,
Steven Diamond
,
Abhijit Sharang
,
Rok Sosič
,
Stephen Boyd
,
Jure Leskovec
NeurIPS
2017
Stochastic Mirror Descent in Variationally Coherent Optimization Problems
Zhengyuan Zhou
,
Panayotis Mertikopoulos
,
Nicholas Bambos
,
Stephen Boyd
,
Peter W. Glynn
JMLR
2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
,
Stephen Boyd
,
Emmanuel J. Candès
MLOSS
2016
CVXPY: A Python-Embedded Modeling Language for Convex Optimization
Steven Diamond
,
Stephen Boyd
ICCV
2015
Convex Optimization with Abstract Linear Operators
Steven Diamond
,
Stephen Boyd
NeurIPS
2014
A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights
Weijie Su
,
Stephen Boyd
,
Emmanuel Candes
NeurIPS
2012
Accuracy at the Top
Stephen Boyd
,
Corinna Cortes
,
Mehryar Mohri
,
Ana Radovanovic
JMLR
2007
An Interior-Point Method for Large-Scale L1-Regularized Logistic Regression
Kwangmoo Koh
,
Seung-Jean Kim
,
Stephen Boyd
NeurIPS
2005
Robust Fisher Discriminant Analysis
Seung-jean Kim
,
Alessandro Magnani
,
Stephen Boyd