ML Anthology
Authors
Search
About
Brehmer, Johann
20 publications
ICLR
2025
Differentiable and Learnable Wireless Simulation with Geometric Transformers
Thomas Hehn
,
Markus Peschl
,
Tribhuvanesh Orekondy
,
Arash Behboodi
,
Johann Brehmer
TMLR
2025
Does Equivariance Matter at Scale?
Johann Brehmer
,
Sönke Behrends
,
Pim De Haan
,
Taco Cohen
TMLR
2024
Deconfounding Imitation Learning with Variational Inference
Risto Vuorio
,
Pim De Haan
,
Johann Brehmer
,
Hanno Ackermann
,
Daniel Dijkman
,
Taco Cohen
ICMLW
2024
Differentiable Wireless Simulation with Geometric Transformers
Thomas Hehn
,
Markus Peschl
,
Tribhuvanesh Orekondy
,
Arash Behboodi
,
Johann Brehmer
NeurIPSW
2024
Does Equivariance Matter at Scale?
Johann Brehmer
,
Sönke Behrends
,
Pim De Haan
,
Taco Cohen
AISTATS
2024
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers
Pim Haan
,
Taco Cohen
,
Johann Brehmer
ICMLW
2024
Geometric Wireless Simulation with Equivariant Transformers
Thomas Hehn
,
Markus Peschl
,
Tribhuvanesh Orekondy
,
Arash Behboodi
,
Johann Brehmer
NeurIPS
2024
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics
Jonas Spinner
,
Victor Bresó
,
Pim de Haan
,
Tilman Plehn
,
Jesse Thaler
,
Johann Brehmer
NeurIPS
2023
EDGI: Equivariant Diffusion for Planning with Embodied Agents
Johann Brehmer
,
Joey Bose
,
Pim de Haan
,
Taco S Cohen
ICLRW
2023
EDGI: Equivariant Diffusion for Planning with Embodied Agents
Johann Brehmer
,
Joey Bose
,
Pim De Haan
,
Taco Cohen
NeurIPSW
2023
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers
Pim De Haan
,
Taco Cohen
,
Johann Brehmer
NeurIPSW
2023
FoMo Rewards: Can We Cast Foundation Models as Reward Functions?
Ekdeep Singh Lubana
,
Johann Brehmer
,
Pim De Haan
,
Taco Cohen
NeurIPS
2023
Geometric Algebra Transformer
Johann Brehmer
,
Pim de Haan
,
Sönke Behrends
,
Taco S Cohen
ICMLW
2023
Geometric Algebra Transformers
Johann Brehmer
,
Pim De Haan
,
Sönke Behrends
,
Taco Cohen
TMLR
2023
Instance-Adaptive Video Compression: Improving Neural Codecs by Training on the Test Set
Ties van Rozendaal
,
Johann Brehmer
,
Yunfan Zhang
,
Reza Pourreza
,
Auke J. Wiggers
,
Taco Cohen
NeurIPSW
2022
Deconfounded Imitation Learning
Risto Vuorio
,
Pim De Haan
,
Johann Brehmer
,
Hanno Ackermann
,
Daniel Dijkman
,
Taco Cohen
ICLRW
2022
Implicit Neural Video Compression
Yunfan Zhang
,
Ties van Rozendaal
,
Johann Brehmer
,
Markus Nagel
,
Taco Cohen
NeurIPS
2022
Weakly Supervised Causal Representation Learning
Johann Brehmer
,
Pim de Haan
,
Phillip Lippe
,
Taco S Cohen
ICLRW
2022
Weakly Supervised Causal Representation Learning
Johann Brehmer
,
Pim De Haan
,
Phillip Lippe
,
Taco Cohen
NeurIPS
2020
Flows for Simultaneous Manifold Learning and Density Estimation
Johann Brehmer
,
Kyle Cranmer