Briol, Francois-Xavier

29 publications

JMLR 2025 Composite Goodness-of-Fit Tests with Kernels Oscar Key, Arthur Gretton, François-Xavier Briol, Tamara Fernandez
AISTATS 2025 Cost-Aware Simulation-Based Inference Ayush Bharti, Daolang Huang, Samuel Kaski, Francois-Xavier Briol
ICML 2025 Kernel Quantile Embeddings and Associated Probability Metrics Masha Naslidnyk, Siu Lun Chau, Francois-Xavier Briol, Krikamol Muandet
NeurIPS 2025 Multilevel Neural Simulation-Based Inference Yuga Hikida, Ayush Bharti, Niall Jeffrey, Francois-Xavier Briol
ICML 2025 Nested Expectations with Kernel Quadrature Zonghao Chen, Masha Naslidnyk, Francois-Xavier Briol
JMLR 2025 On the Robustness of Kernel Goodness-of-Fit Tests Xing Liu, François-Xavier Briol
ICML 2025 Robust and Conjugate Spatio-Temporal Gaussian Processes William Laplante, Matias Altamirano, Andrew B. Duncan, Jeremias Knoblauch, Francois-Xavier Briol
UAI 2024 Conditional Bayesian Quadrature Zonghao Chen, Masha Naslidnyk, Arthur Gretton, Francois-Xavier Briol
ICML 2024 Outlier-Robust Kalman Filtering Through Generalised Bayes Gerardo Duran-Martin, Matias Altamirano, Alex Shestopaloff, Leandro Sánchez-Betancourt, Jeremias Knoblauch, Matt Jones, Francois-Xavier Briol, Kevin Patrick Murphy
ICML 2024 Robust and Conjugate Gaussian Process Regression Matias Altamirano, Francois-Xavier Briol, Jeremias Knoblauch
UAI 2023 Bayesian Numerical Integration with Neural Networks Katharina Ott, Michael Tiemann, Philipp Hennig, François-Xavier Briol
UAI 2023 Meta-Learning Control Variates: Variance Reduction with Limited Data Zhuo Sun, Chris J Oates, François-Xavier Briol
AISTATS 2023 Multilevel Bayesian Quadrature Kaiyu Li, Daniel Giles, Toni Karvonen, Serge Guillas, Francois-Xavier Briol
ICML 2023 Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference Ayush Bharti, Masha Naslidnyk, Oscar Key, Samuel Kaski, Francois-Xavier Briol
ICML 2023 Robust and Scalable Bayesian Online Changepoint Detection Matias Altamirano, Francois-Xavier Briol, Jeremias Knoblauch
ICMLW 2023 Robust and Scalable Bayesian Online Changepoint Detection Matias Altamirano, Francois-Xavier Briol, Jeremias Knoblauch
ICML 2023 Vector-Valued Control Variates Zhuo Sun, Alessandro Barp, Francois-Xavier Briol
AISTATS 2022 Robust Bayesian Inference for Simulator-Based Models via the MMD Posterior Bootstrap Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas, Francois-Xavier Briol
NeurIPSW 2022 Towards Healing the Blindness of Score Matching Mingtian Zhang, Oscar Key, Peter Hayes, David Barber, Brooks Paige, Francois-Xavier Briol
JMLR 2021 Convergence Guarantees for Gaussian Process Means with Misspecified Likelihoods and Smoothness George Wynne, François-Xavier Briol, Mark Girolami
JMLR 2021 The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks Takuo Matsubara, Chris J. Oates, François-Xavier Briol
NeurIPS 2020 Bayesian Probabilistic Numerical Integration with Tree-Based Models Harrison Zhu, Xing Liu, Ruya Kang, Zhichao Shen, Seth Flaxman, Francois-Xavier Briol
NeurIPS 2019 Minimum Stein Discrepancy Estimators Alessandro Barp, Francois-Xavier Briol, Andrew Duncan, Mark Girolami, Lester Mackey
ICML 2019 Stein Point Markov Chain Monte Carlo Wilson Ye Chen, Alessandro Barp, Francois-Xavier Briol, Jackson Gorham, Mark Girolami, Lester Mackey, Chris Oates
ICML 2018 Bayesian Quadrature for Multiple Related Integrals Xiaoyue Xi, Francois-Xavier Briol, Mark Girolami
ICML 2018 Stein Points Wilson Ye Chen, Lester Mackey, Jackson Gorham, Francois-Xavier Briol, Chris Oates
ICML 2017 On the Sampling Problem for Kernel Quadrature François-Xavier Briol, Chris J. Oates, Jon Cockayne, Wilson Ye Chen, Mark Girolami
NeurIPS 2017 Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models Chris Oates, Steven Niederer, Angela Lee, François-Xavier Briol, Mark Girolami
NeurIPS 2015 Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees François-Xavier Briol, Chris Oates, Mark Girolami, Michael A Osborne