Bronstein, Michael M.

129 publications

ICML 2025 A General Graph Spectral Wavelet Convolution via Chebyshev Order Decomposition Nian Liu, Xiaoxin He, Thomas Laurent, Francesco Di Giovanni, Michael M. Bronstein, Xavier Bresson
NeurIPS 2025 Amortized Sampling with Transferable Normalizing Flows Charlie B. Tan, Majdi Hassan, Leon Klein, Saifuddin Syed, Dominique Beaini, Michael M. Bronstein, Alexander Tong, Kirill Neklyudov
FnTML 2025 Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Alex Strasser, Haiyang Yu, Yuqing Xie, Xiang Fu, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik J. Bekkers, Michael M. Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi S. Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess E. Smidt, Shuiwang Ji
ICML 2025 Balancing Efficiency and Expressiveness: Subgraph GNNs with Walk-Based Centrality Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael M. Bronstein, Haggai Maron, Fabrizio Frasca
ICLR 2025 Bundle Neural Network for Message Diffusion on Graphs Jacob Bamberger, Federico Barbero, Xiaowen Dong, Michael M. Bronstein
NeurIPS 2025 Curly Flow Matching for Learning Non-Gradient Field Dynamics Katarina Petrović, Lazar Atanackovic, Viggo Moro, Kacper Kapuśniak, Ismail Ilkan Ceylan, Michael M. Bronstein, Joey Bose, Alexander Tong
ICLRW 2025 Curly Flow Matching for Learning Non-Gradient Field Dynamics Katarina Petrović, Lazar Atanackovic, Kacper Kapuśniak, Michael M. Bronstein, Joey Bose, Alexander Tong
ICLRW 2025 Curly Flow Matching for Learning Non-Gradient Field Dynamics Katarina Petrović, Lazar Atanackovic, Kacper Kapusniak, Michael M. Bronstein, Joey Bose, Alexander Tong
NeurIPS 2025 Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai Li, Peihao Wang, Konstantin Schürholt, Damian Borth, Michael M. Bronstein, Yang You, Zhangyang Wang, Kai Wang
TMLR 2025 DyGMamba: Efficiently Modeling Long-Term Temporal Dependency on Continuous-Time Dynamic Graphs with State Space Models Zifeng Ding, Yifeng Li, Yuan He, Antonio Norelli, Jingcheng Wu, Volker Tresp, Michael M. Bronstein, Yunpu Ma
NeurIPS 2025 Equivariance Everywhere All at Once: A Recipe for Graph Foundation Models Ben Finkelshtein, Ismail Ilkan Ceylan, Michael M. Bronstein, Ron Levie
ICLRW 2025 Flow-Based Fragment Identification via Contrastive Learning of Binding Site-Specific Latent Representations Rebecca Manuela Neeser, Ilia Igashov, Arne Schneuing, Michael M. Bronstein, Philippe Schwaller, Bruno Correia
ICLRW 2025 Flows Don't Cross in High Dimension Teodora Reu, Sixtine Dromigny, Michael M. Bronstein, Francisco Vargas
ICLR 2025 Fully-Inductive Node Classification on Arbitrary Graphs Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, Jian Tang
NeurIPS 2025 GradMetaNet: An Equivariant Architecture for Learning on Gradients Yoav Gelberg, Yam Eitan, Aviv Navon, Aviv Shamsian, Theo Putterman, Michael M. Bronstein, Haggai Maron
NeurIPS 2025 Gradient Variance Reveals Failure Modes in Flow-Based Generative Models Teodora Reu, Sixtine Dromigny, Michael M. Bronstein, Francisco Vargas
ICLRW 2025 Graph Low-Rank Adapters of High Regularity for Graph Neural Networks and Graph Transformers Pantelis Papageorgiou, Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, Michael M. Bronstein
ICLRW 2025 Graph Networks Struggle with Variable Scale Christian Koke, Yuesong Shen, Abhishek Saroha, Marvin Eisenberger, Bastian Rieck, Michael M. Bronstein, Daniel Cremers
ICLR 2025 Homomorphism Counts as Structural Encodings for Graph Learning Linus Bao, Emily Jin, Michael M. Bronstein, Ismail Ilkan Ceylan, Matthias Lanzinger
ICML 2025 How Expressive Are Knowledge Graph Foundation Models? Xingyue Huang, Pablo Barcelo, Michael M. Bronstein, Ismail Ilkan Ceylan, Mikhail Galkin, Juan L Reutter, Miguel Romero Orth
ICLRW 2025 Large Drug Discovery Model Ilia Igashov, Arne Schneuing, Adrian W. Dobbelstein, Irina Morozova, Rebecca Manuela Neeser, Evgenia Elizarova, Philippe Schwaller, Michael M. Bronstein, Bruno Correia
TMLR 2025 Link Prediction with Relational Hypergraphs Xingyue Huang, Miguel Romero Orth, Pablo Barcelo, Michael M. Bronstein, Ismail Ilkan Ceylan
ICLR 2025 Multi-Domain Distribution Learning for De Novo Drug Design Arne Schneuing, Ilia Igashov, Adrian W. Dobbelstein, Thomas Castiglione, Michael M. Bronstein, Bruno Correia
ICLR 2025 Neural Spacetimes for DAG Representation Learning Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, Marc T. Law, Xiaowen Dong, Michael M. Bronstein
ICLRW 2025 On Incorporating Scale into Graph Networks Christian Koke, Yuesong Shen, Abhishek Saroha, Marvin Eisenberger, Bastian Rieck, Michael M. Bronstein, Daniel Cremers
ICML 2025 On Measuring Long-Range Interactions in Graph Neural Networks Jacob Bamberger, Benjamin Gutteridge, Scott Le Roux, Michael M. Bronstein, Xiaowen Dong
ICLRW 2025 On Multi-Scale Graph Representation Learning Christian Koke, Dominik Schnaus, Yuesong Shen, Abhishek Saroha, Marvin Eisenberger, Bastian Rieck, Michael M. Bronstein, Daniel Cremers
NeurIPS 2025 On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning Alvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, Xiaowen Dong, Michael M. Bronstein, Pierre Vandergheynst
NeurIPS 2025 Over-Squashing in Spatiotemporal Graph Neural Networks Ivan Marisca, Jacob Bamberger, Cesare Alippi, Michael M. Bronstein
ICML 2025 Position: Graph Learning Will Lose Relevance Due to Poor Benchmarks Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Siraudin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin, Christopher Morris
NeurIPS 2025 Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities Tara Akhound-Sadegh, Jungyoon Lee, Joey Bose, Valentin De Bortoli, Arnaud Doucet, Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, Alexander Tong
ICLRW 2025 Relaxed Equivariance via Multitask Learning Ahmed A. A. Elhag, T. Konstantin Rusch, Francesco Di Giovanni, Michael M. Bronstein
ICML 2025 Scalable Equilibrium Sampling with Sequential Boltzmann Generators Charlie B. Tan, Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, Alexander Tong
ICLRW 2025 Scalable Equilibrium Sampling with Sequential Boltzmann Generators Charlie B. Tan, Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, Alexander Tong
TMLR 2025 Setting the Record Straight on Transformer Oversmoothing Gbetondji Jean-Sebastien Dovonon, Michael M. Bronstein, Matt Kusner
ICLR 2025 Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Cheng-Hao Liu, Sarthak Mittal, Nouha Dziri, Michael M. Bronstein, Pranam Chatterjee, Alexander Tong, Joey Bose
ICML 2025 Supercharging Graph Transformers with Advective Diffusion Qitian Wu, Chenxiao Yang, Kaipeng Zeng, Michael M. Bronstein
ICLR 2025 Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael M. Bronstein, Haggai Maron
ICLR 2025 Understanding Virtual Nodes: Oversquashing and Node Heterogeneity Joshua Southern, Francesco Di Giovanni, Michael M. Bronstein, Johannes F. Lutzeyer
ICMLW 2024 Bundle Neural Networks for Message Diffusion on Graphs Jacob Bamberger, Federico Barbero, Xiaowen Dong, Michael M. Bronstein
ICML 2024 Cooperative Graph Neural Networks Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, Ismail Ilkan Ceylan
NeurIPSW 2024 Enhancing the Expressivity of Temporal Graph Networks Through Source-Target Identification Benedict Aaron Tjandra, Federico Barbero, Michael M. Bronstein
ICLRW 2024 Expanding Genomic Discovery: Causally-Inspired Neural Networks for Predicting Therapeutic Targets Guadalupe Gonzalez, Isuru Herath, Kirill Veselkov, Michael M. Bronstein, Marinka Zitnik
ICLR 2024 From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module Claudio Battiloro, Indro Spinelli, Lev Telyatnikov, Michael M. Bronstein, Simone Scardapane, Paolo Di Lorenzo
NeurIPSW 2024 Fully-Inductive Node Classification on Arbitrary Graphs Jianan Zhao, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang
NeurIPSW 2024 GraphText: Graph Reasoning in Text Space Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang
NeurIPSW 2024 Homomorphism Counts as Structural Encodings for Molecular Property Prediction Linus Bao, Emily Jin, Michael M. Bronstein, Ismail Ilkan Ceylan, Matthias Lanzinger
ICML 2024 Homomorphism Counts for Graph Neural Networks: All About That Basis Emily Jin, Michael M. Bronstein, Ismail Ilkan Ceylan, Matthias Lanzinger
NeurIPSW 2024 Learning Protocols for Non-Equilibrium Conformational Free-Energy Estimation Using Optimal Transport and Conditional Flow Matching Lars Holdijk, Michael M. Bronstein, Max Welling
ICLR 2024 Locality-Aware Graph Rewiring in GNNs Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, Francesco Di Giovanni
ICMLW 2024 Message-Passing Monte Carlo: Generating Low-Discrepancy Point Sets via Graph Neural Networks T. Konstantin Rusch, Nathan Kirk, Michael M. Bronstein, Christiane Lemieux, Daniela Rus
ICMLW 2024 On the Effectiveness of Quantum Chemistry Pre-Training for Pharmacological Property Prediction Arun Raja, Hongtao Zhao, Christian Tyrchan, Eva Nittinger, Michael M. Bronstein, Charlotte Deane, Garrett M Morris
NeurIPS 2024 On the Limitations of Fractal Dimension as a Measure of Generalization Charlie B. Tan, Inés García-Redondo, Qiquan Wang, Michael M. Bronstein, Anthea Monod
ICMLW 2024 PLINDER: The Protein-Ligand Interactions Dataset and Evaluation Resource Janani Durairaj, Yusuf Adeshina, Zhonglin Cao, Xuejin Zhang, Vladas Oleinikovas, Thomas Duignan, Zachary McClure, Xavier Robin, Emanuele Rossi, Guoqing Zhou, Srimukh Prasad Veccham, Clemens Isert, Yuxing Peng, Prabindh Sundareson, Mehmet Akdel, Gabriele Corso, Hannes Stark, Zachary Wayne Carpenter, Michael M. Bronstein, Emine Kucukbenli, Torsten Schwede, Luca Naef
ICML 2024 Position: Future Directions in the Theory of Graph Machine Learning Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, Stefanie Jegelka
ICML 2024 Position: Topological Deep Learning Is the New Frontier for Relational Learning Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T Schaub, Petar Veličković, Bei Wang, Yusu Wang, Guowei Wei, Ghada Zamzmi
ICLR 2024 RetroBridge: Modeling Retrosynthesis with Markov Bridges Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M. Bronstein, Bruno Correia
ICLR 2024 SE(3)-Stochastic Flow Matching for Protein Backbone Generation Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, Alexander Tong
ICLRW 2024 Setting the Record Straight on Transformer Oversmoothing Gbetondji Jean-Sebastien Dovonon, Michael M. Bronstein, Matt Kusner
ICMLW 2024 Setting the Record Straight on Transformer Oversmoothing Gbetondji Jean-Sebastien Dovonon, Michael M. Bronstein, Matt Kusner
NeurIPSW 2024 Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael M. Bronstein, Haggai Maron
ICLRW 2024 Towards Structure-Based Drug Design with Protein Flexibility Arne Schneuing, Ilia Igashov, Thomas Castiglione, Michael M. Bronstein, Bruno Correia
ICMLW 2024 Transferability for Graph Convolutional Networks Christian Koke, Abhishek Saroha, Yuesong Shen, Marvin Eisenberger, Michael M. Bronstein, Daniel Cremers
ICMLW 2023 Can Strong Structural Encoding Reduce the Importance of Message Passing? Floor Eijkelboom, Erik J Bekkers, Michael M. Bronstein, Francesco Di Giovanni
ICML 2023 DRew: Dynamically Rewired Message Passing with Delay Benjamin Gutteridge, Xiaowen Dong, Michael M. Bronstein, Francesco Di Giovanni
LoG 2023 Edge Directionality Improves Learning on Heterophilic Graphs Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, Michael M. Bronstein
ICMLW 2023 Evaluation Metrics for Protein Structure Generation Joshua Southern, Arne Schneuing, Michael M. Bronstein, Bruno Correia
ICLRW 2023 Flexible Small-Molecule Design and Optimization with Equivariant Diffusion Models Charles Harris, Kieran Didi, Arne Schneuing, Yuanqi Du, Arian Rokkum Jamasb, Michael M. Bronstein, Bruno Correia, Pietro Lio, Tom Leon Blundell
ICLR 2023 Gradient Gating for Deep Multi-Rate Learning on Graphs T. Konstantin Rusch, Benjamin Paul Chamberlain, Michael W. Mahoney, Michael M. Bronstein, Siddhartha Mishra
ICLR 2023 Graph Neural Networks for Link Prediction with Subgraph Sketching Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas Markovich, Nils Yannick Hammerla, Michael M. Bronstein, Max Hansmire
ICLR 2023 Hyperbolic Deep Reinforcement Learning Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, Jonathan J Hunt
ICML 2023 On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, Michael M. Bronstein
ICMLW 2023 On the Expressive Power of Ollivier-Ricci Curvature on Graphs Joshua Southern, Jeremy Wayland, Michael M. Bronstein, Bastian Rieck
AAAI 2023 Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderón, Michael M. Bronstein, Marcello Restelli
NeurIPSW 2023 RetroBridge: Modeling Retrosynthesis with Markov Bridges Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M. Bronstein, Bruno Correia
NeurIPSW 2023 RetroBridge: Modeling Retrosynthesis with Markov Bridges Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M. Bronstein, Bruno Correia
TMLR 2023 Understanding Convolution on Graphs via Energies Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich, Michael M. Bronstein
ICLRW 2022 Decoding Surface Fingerprints for Protein-Ligand Interactions Ilia Igashov, Arian Rokkum Jamasb, Ahmed Sadek, Freyr Sverrisson, Arne Schneuing, Tom Blundell, Pietro Lio, Michael M. Bronstein, Bruno Correia
NeurIPSW 2022 Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design Ilia Igashov, Hannes Stärk, Clement Vignac, Victor Garcia Satorras, Pascal Frossard, Max Welling, Michael M. Bronstein, Bruno Correia
ICLR 2022 Equivariant Subgraph Aggregation Networks Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron
ICLRW 2022 Evaluating Generalization in GFlowNets for Molecule Design Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-Hao Liu, Maksym Korablyov, Michael M. Bronstein, Yoshua Bengio
ICLRW 2022 Graph Anisotropic Diffusion Ahmed A. A. Elhag, Gabriele Corso, Hannes Stärk, Michael M. Bronstein
ICLRW 2022 Graph Anisotropic Diffusion for Molecules Ahmed A. A. Elhag, Gabriele Corso, Hannes Stärk, Michael M. Bronstein
ICLRW 2022 Heterogeneous Manifolds for Curvature-Aware Graph Embedding Francesco Di Giovanni, Giulia Luise, Michael M. Bronstein
NeurIPSW 2022 Hyperbolic Deep Reinforcement Learning Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, Jonathan J Hunt
ICMLW 2022 Invariance Discovery for Systematic Generalization in Reinforcement Learning Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderon, Michael M. Bronstein, Marcello Restelli
ICLRW 2022 Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Lio, Michael M. Bronstein
LoG 2022 On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein
NeurIPSW 2022 On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein
ICLRW 2022 Physics-Informed Deep Neural Network for Rigid-Body Protein Docking Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M. Bronstein, Bruno Correia
NeurIPSW 2022 Provably Efficient Causal Model-Based Reinforcement Learning for Environment-Agnostic Generalization Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderon, Michael M. Bronstein, Marcello Restelli
ICLR 2022 Understanding Over-Squashing and Bottlenecks on Graphs via Curvature Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein
CVPR 2021 Fast End-to-End Learning on Protein Surfaces Freyr Sverrisson, Jean Feydy, Bruno E. Correia, Michael M. Bronstein
NeurIPSW 2021 GRAND: Graph Neural Diffusion Benjamin Paul Chamberlain, James Rowbottom, Maria I. Gorinova, Stefan D Webb, Emanuele Rossi, Michael M. Bronstein
ICLRW 2021 Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montufar, Pietro Liò, Michael M. Bronstein
ICCVW 2019 SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator Shunwang Gong, Lei Chen, Michael M. Bronstein, Stefanos Zafeiriou
CVPR 2017 Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, Michael M. Bronstein
CVPR 2016 Efficient Globally Optimal 2D-to-3D Deformable Shape Matching Zorah Lahner, Emanuele Rodola, Frank R. Schmidt, Michael M. Bronstein, Daniel Cremers
ECCV 2016 MADMM: A Generic Algorithm for Non-Smooth Optimization on Manifolds Artiom Kovnatsky, Klaus Glashoff, Michael M. Bronstein
CVPR 2015 Functional Correspondence by Matrix Completion Artiom Kovnatsky, Michael M. Bronstein, Xavier Bresson, Pierre Vandergheynst
ICCVW 2015 Geodesic Convolutional Neural Networks on Riemannian Manifolds Jonathan Masci, Davide Boscaini, Michael M. Bronstein, Pierre Vandergheynst
ECCVW 2014 Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part I Lourdes Agapito, Michael M. Bronstein, Carsten Rother
ECCVW 2014 Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II Lourdes Agapito, Michael M. Bronstein, Carsten Rother
ECCV 2014 Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part III Lourdes Agapito, Michael M. Bronstein, Carsten Rother
ECCVW 2014 Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part III Lourdes Agapito, Michael M. Bronstein, Carsten Rother
ECCV 2014 Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part IV Lourdes Agapito, Michael M. Bronstein, Carsten Rother
ECCVW 2014 Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part IV Lourdes Agapito, Michael M. Bronstein, Carsten Rother
ICLR 2014 Sparse Similarity-Preserving Hashing Jonathan Masci, Alexander M. Bronstein, Michael M. Bronstein, Pablo Sprechmann, Guillermo Sapiro
ECCV 2012 Group-Valued Regularization for Analysis of Articulated Motion Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Xue-Cheng Tai, Ron Kimmel
ECCVW 2012 Group-Valued Regularization for Analysis of Articulated Motion Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Xue-Cheng Tai, Ron Kimmel
CVPR 2012 Intrinsic Shape Context Descriptors for Deformable Shapes Iasonas Kokkinos, Michael M. Bronstein, Roee Litman, Alexander M. Bronstein
ECCV 2012 Putting the Pieces Together: Regularized Multi-Part Shape Matching Or Litany, Alexander M. Bronstein, Michael M. Bronstein
ECCVW 2012 Putting the Pieces Together: Regularized Multi-Part Shape Matching Or Litany, Alexander M. Bronstein, Michael M. Bronstein
ECCV 2012 Stable Spectral Mesh Filtering Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein
ECCVW 2012 Stable Spectral Mesh Filtering Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein
CVPR 2011 Affine-Invariant Diffusion Geometry for the Analysis of Deformable 3D Shapes Dan Raviv, Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel, Nir A. Sochen
CVPR 2010 Data Fusion Through Cross-Modality Metric Learning Using Similarity-Sensitive Hashing Michael M. Bronstein, Alexander M. Bronstein, Fabrice Michel, Nikos Paragios
ECCV 2010 Intrinsic Regularity Detection in 3D Geometry Niloy J. Mitra, Alexander M. Bronstein, Michael M. Bronstein
CVPR 2010 Scale-Invariant Heat Kernel Signatures for Non-Rigid Shape Recognition Michael M. Bronstein, Iasonas Kokkinos
ECCV 2010 Spatially-Sensitive Affine-Invariant Image Descriptors Alexander M. Bronstein, Michael M. Bronstein
ICCVW 2009 3D-Color Video Camera O. Rubinstein, Yaron Honen, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
ICCVW 2009 On Reconstruction of Non-Rigid Shapes with Intrinsic Regularization Yohai S. Devir, Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
ICCVW 2009 Shape Google: A Computer Vision Approach to Isometry Invariant Shape Retrieval Maks Ovsjanikov, Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas
CVPRW 2008 Not Only Size Matters: Regularized Partial Matching of Nonrigid Shapes Alexander M. Bronstein, Michael M. Bronstein
ECCV 2008 Regularized Partial Matching of Rigid Shapes Alexander M. Bronstein, Michael M. Bronstein
ICCV 2007 Rock, Paper, and Scissors: Extrinsic vs. Intrinsic Similarity of Non-Rigid Shapes Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
ICCV 2007 Symmetries of Non-Rigid Shapes Dan Raviv, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
ECCV 2006 Robust Expression-Invariant Face Recognition from Partially Missing Data Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
ECCV 2004 Face Recognition from Facial Surface Metric Alexander M. Bronstein, Michael M. Bronstein, Alon Spira, Ron Kimmel