ML Anthology
Authors
Search
About
Brown, Daniel S.
20 publications
CoRL
2025
Agreement Volatility: A Second-Order Metric for Uncertainty Quantification in Surgical Robot Learning
Jordan Thompson
,
Britton Jordan
,
Daniel S. Brown
,
Alan Kuntz
AAAI
2025
Leveraging Human Input to Enable Robust, Interactive, and Aligned AI Systems
Daniel S. Brown
TMLR
2023
Benchmarks and Algorithms for Offline Preference-Based Reward Learning
Daniel Shin
,
Anca Dragan
,
Daniel S. Brown
ICLR
2023
Causal Confusion and Reward Misidentification in Preference-Based Reward Learning
Jeremy Tien
,
Jerry Zhi-Yang He
,
Zackory Erickson
,
Anca Dragan
,
Daniel S. Brown
ICML
2023
Contextual Reliability: When Different Features Matter in Different Contexts
Gaurav Rohit Ghosal
,
Amrith Setlur
,
Daniel S. Brown
,
Anca Dragan
,
Aditi Raghunathan
CoRL
2023
Quantifying Assistive Robustness via the Natural-Adversarial Frontier
Jerry Zhi-Yang He
,
Daniel S. Brown
,
Zackory Erickson
,
Anca Dragan
AAAI
2023
The Effect of Modeling Human Rationality Level on Learning Rewards from Multiple Feedback Types
Gaurav R. Ghosal
,
Matthew Zurek
,
Daniel S. Brown
,
Anca D. Dragan
NeurIPSW
2022
Interpretable Reward Learning via Differentiable Decision Trees
Akansha Kalra
,
Daniel S. Brown
ICMLW
2022
A Study of Causal Confusion in Preference-Based Reward Learning
Jeremy Tien
,
Jerry Zhi-Yang He
,
Zackory Erickson
,
Anca Dragan
,
Daniel S. Brown
TMLR
2022
Bayesian Methods for Constraint Inference in Reinforcement Learning
Dimitris Papadimitriou
,
Usman Anwar
,
Daniel S. Brown
CoRL
2022
Learning Representations That Enable Generalization in Assistive Tasks
Jerry Zhi-Yang He
,
Zackory Erickson
,
Daniel S. Brown
,
Aditi Raghunathan
,
Anca Dragan
L4DC
2021
Optimal Cost Design for Model Predictive Control
Avik Jain
,
Lawrence Chan
,
Daniel S. Brown
,
Anca D. Dragan
ICML
2021
Policy Gradient Bayesian Robust Optimization for Imitation Learning
Zaynah Javed
,
Daniel S Brown
,
Satvik Sharma
,
Jerry Zhu
,
Ashwin Balakrishna
,
Marek Petrik
,
Anca Dragan
,
Ken Goldberg
CoRL
2021
ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning
Ryan Hoque
,
Ashwin Balakrishna
,
Ellen Novoseller
,
Albert Wilcox
,
Daniel S. Brown
,
Ken Goldberg
ICML
2021
Value Alignment Verification
Daniel S Brown
,
Jordan Schneider
,
Anca Dragan
,
Scott Niekum
NeurIPSW
2020
Value Alignment Verification
Daniel S. Brown
,
Jordan Schneider
,
Scott Niekum
CoRL
2019
Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations
Daniel S. Brown
,
Wonjoon Goo
,
Scott Niekum
AAAI
2019
Machine Teaching for Inverse Reinforcement Learning: Algorithms and Applications
Daniel S. Brown
,
Scott Niekum
AAAI
2018
Efficient Probabilistic Performance Bounds for Inverse Reinforcement Learning
Daniel S. Brown
,
Scott Niekum
CoRL
2018
Risk-Aware Active Inverse Reinforcement Learning
Daniel S. Brown
,
Yuchen Cui
,
Scott Niekum