ML Anthology
Authors
Search
About
Burt, David R.
12 publications
TMLR
2025
Approximations to Worst-Case Data Dropping: Unmasking Failure Modes
Jenny Y. Huang
,
David R. Burt
,
Yunyi Shen
,
Tin D. Nguyen
,
Tamara Broderick
ICLRW
2025
Approximations to Worst-Case Data Dropping: Unmasking Failure Modes
Jenny Y. Huang
,
David R. Burt
,
Yunyi Shen
,
Tin D. Nguyen
,
Tamara Broderick
AISTATS
2025
Consistent Validation for Predictive Methods in Spatial Settings
David R. Burt
,
Yunyi Shen
,
Tamara Broderick
NeurIPS
2025
Smooth Sailing: Lipschitz-Driven Uncertainty Quantification for Spatial Associations
David R. Burt
,
Renato Berlinghieri
,
Stephen Bates
,
Tamara Broderick
ICMLW
2024
Consistent Validation for Predictive Methods in Spatial Settings
David R. Burt
,
Yunyi Shen
,
Tamara Broderick
JMLR
2024
Numerically Stable Sparse Gaussian Processes via Minimum Separation Using Cover Trees
Alexander Terenin
,
David R. Burt
,
Artem Artemev
,
Seth Flaxman
,
Mark van der Wilk
,
Carl Edward Rasmussen
,
Hong Ge
ICML
2023
Gaussian Processes at the Helm(holtz): A More Fluid Model for Ocean Currents
Renato Berlinghieri
,
Brian L. Trippe
,
David R. Burt
,
Ryan James Giordano
,
Kaushik Srinivasan
,
Tamay Özgökmen
,
Junfei Xia
,
Tamara Broderick
ICLRW
2023
Gaussian Processes at the Helm(holtz): A More Fluid Model for Ocean Currents
Renato Berlinghieri
,
Brian L. Trippe
,
David R. Burt
,
Ryan James Giordano
,
Kaushik Srinivasan
,
Tamay Özgökmen
,
Junfei Zia
,
Tamara Broderick
AISTATS
2022
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Beau Coker
,
Wessel P. Bruinsma
,
David R. Burt
,
Weiwei Pan
,
Finale Doshi-Velez
NeurIPSW
2021
Barely Biased Learning for Gaussian Process Regression
David R. Burt
,
Artem Artemev
,
Mark van der Wilk
ICML
2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
Artem Artemev
,
David R. Burt
,
Mark Wilk
JMLR
2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
,
Carl Edward Rasmussen
,
Mark van der Wilk