ML Anthology
Authors
Search
About
Cai, Diana
13 publications
AISTATS
2025
Batch, Match, and Patch: Low-Rank Approximations for Score-Based Variational Inference
Chirag Modi
,
Diana Cai
,
Lawrence K. Saul
NeurIPS
2025
Fisher Meets Feynman: Score-Based Variational Inference with a Product of Experts
Diana Cai
,
Robert M. Gower
,
David Blei
,
Lawrence K. Saul
ICML
2024
Batch and Match: Black-Box Variational Inference with a Score-Based Divergence
Diana Cai
,
Chirag Modi
,
Loucas Pillaud-Vivien
,
Charles Margossian
,
Robert M. Gower
,
David Blei
,
Lawrence K. Saul
NeurIPS
2024
EigenVI: Score-Based Variational Inference with Orthogonal Function Expansions
Diana Cai
,
Chirag Modi
,
Charles C. Margossian
,
Robert M. Gower
,
David M. Blei
,
Lawrence K. Saul
ICMLW
2024
EigenVI: Score-Based Variational Inference with Orthogonal Function Expansions
Diana Cai
,
Chirag Modi
,
Charles Margossian
,
Robert M. Gower
,
David Blei
,
Lawrence K. Saul
TMLR
2024
KD-BIRL: Kernel Density Bayesian Inverse Reinforcement Learning
Aishwarya Mandyam
,
Didong Li
,
Andrew Jones
,
Diana Cai
,
Barbara E Engelhardt
NeurIPS
2022
Multi-Fidelity Monte Carlo: A Pseudo-Marginal Approach
Diana Cai
,
Ryan P. Adams
UAI
2021
Active Multi-Fidelity Bayesian Online Changepoint Detection
Gregory W. Gundersen
,
Diana Cai
,
Chuteng Zhou
,
Barbara E. Engelhardt
,
Ryan P. Adams
ICML
2021
Finite Mixture Models Do Not Reliably Learn the Number of Components
Diana Cai
,
Trevor Campbell
,
Tamara Broderick
NeurIPS
2021
Slice Sampling Reparameterization Gradients
David Zoltowski
,
Diana Cai
,
Ryan P. Adams
NeurIPSW
2020
Power Posteriors Do Not Reliably Learn the Number of Components in a Finite Mixture
Diana Cai
,
Trevor Campbell
,
Tamara Broderick
NeurIPS
2018
A Bayesian Nonparametric View on Count-Min Sketch
Diana Cai
,
Michael Mitzenmacher
,
Ryan P. Adams
NeurIPS
2016
Edge-Exchangeable Graphs and Sparsity
Diana Cai
,
Trevor Campbell
,
Tamara Broderick