ML Anthology
Authors
Search
About
Campbell, Trevor
36 publications
NeurIPS
2025
Asymptotically Exact Variational Flows via Involutive MCMC Kernels
Zuheng Xu
,
Trevor Campbell
ICML
2025
AutoStep: Locally Adaptive Involutive MCMC
Tiange Liu
,
Nikola Surjanovic
,
Miguel Biron-Lattes
,
Alexandre Bouchard-Cote
,
Trevor Campbell
AISTATS
2025
Is Gibbs Sampling Faster than Hamiltonian Monte Carlo on GLMs?
Son Luu
,
Zuheng Xu
,
Nikola Surjanovic
,
Miguel Biron-Lattes
,
Trevor Campbell
,
Alexandre Bouchard-Cote
NeurIPS
2025
Nearly Dimension-Independent Convergence of Mean-Field Black-Box Variational Inference
Kyurae Kim
,
Yian Ma
,
Trevor Campbell
,
Jacob R. Gardner
ICML
2025
Tuning Sequential Monte Carlo Samplers via Greedy Incremental Divergence Minimization
Kyurae Kim
,
Zuheng Xu
,
Jacob R. Gardner
,
Trevor Campbell
UAI
2025
Tuning-Free Coreset Markov Chain Monte Carlo via Hot DoG
Naitong Chen
,
Jonathan H. Huggins
,
Trevor Campbell
AISTATS
2024
Coreset Markov Chain Monte Carlo
Naitong Chen
,
Trevor Campbell
NeurIPS
2024
General Bounds on the Quality of Bayesian Coresets
Trevor Campbell
AISTATS
2024
Mixed Variational Flows for Discrete Variables
Gian C. Diluvi
,
Benjamin Bloem-Reddy
,
Trevor Campbell
AISTATS
2024
autoMALA: Locally Adaptive Metropolis-Adjusted Langevin Algorithm
Miguel Biron-Lattes
,
Nikola Surjanovic
,
Saifuddin Syed
,
Trevor Campbell
,
Alexandre Bouchard-Cote
TMLR
2023
Conditional Permutation Invariant Flows
Berend Zwartsenberg
,
Adam Scibior
,
Matthew Niedoba
,
Vasileios Lioutas
,
Justice Sefas
,
Yunpeng Liu
,
Setareh Dabiri
,
Jonathan Wilder Lavington
,
Trevor Campbell
,
Frank Wood
NeurIPS
2023
Embracing the Chaos: Analysis and Diagnosis of Numerical Instability in Variational Flows
Zuheng Xu
,
Trevor Campbell
ICML
2023
MixFlows: Principled Variational Inference via Mixed Flows
Zuheng Xu
,
Naitong Chen
,
Trevor Campbell
NeurIPS
2022
Bayesian Inference via Sparse Hamiltonian Flows
Naitong Chen
,
Zuheng Xu
,
Trevor Campbell
NeurIPS
2022
Fast Bayesian Coresets via Subsampling and Quasi-Newton Refinement
Cian Naik
,
Judith Rousseau
,
Trevor Campbell
NeurIPS
2022
Parallel Tempering with a Variational Reference
Nikola Surjanovic
,
Saifuddin Syed
,
Alexandre Bouchard-Côté
,
Trevor Campbell
ICML
2021
Finite Mixture Models Do Not Reliably Learn the Number of Components
Diana Cai
,
Trevor Campbell
,
Tamara Broderick
ICML
2021
Parallel Tempering on Optimized Paths
Saifuddin Syed
,
Vittorio Romaniello
,
Trevor Campbell
,
Alexandre Bouchard-Cote
UAI
2021
Sequential Core-Set Monte Carlo
Boyan Beronov
,
Christian Weilbach
,
Frank Wood
,
Trevor Campbell
NeurIPS
2020
Bayesian Pseudocoresets
Dionysis Manousakas
,
Zuheng Xu
,
Cecilia Mascolo
,
Trevor Campbell
NeurIPSW
2020
Power Posteriors Do Not Reliably Learn the Number of Components in a Finite Mixture
Diana Cai
,
Trevor Campbell
,
Tamara Broderick
UAI
2020
Slice Sampling for General Completely Random Measures
Peiyuan Zhu
,
Alexandre Bouchard-Cote
,
Trevor Campbell
AISTATS
2020
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan Huggins
,
Mikolaj Kasprzak
,
Trevor Campbell
,
Tamara Broderick
JMLR
2019
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell
,
Tamara Broderick
AISTATS
2019
Data-Dependent Compression of Random Features for Large-Scale Kernel Approximation
Raj Agrawal
,
Trevor Campbell
,
Jonathan Huggins
,
Tamara Broderick
AISTATS
2019
Scalable Gaussian Process Inference with Finite-Data Mean and Variance Guarantees
Jonathan H. Huggins
,
Trevor Campbell
,
Mikolaj Kasprzak
,
Tamara Broderick
NeurIPS
2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Trevor Campbell
,
Boyan Beronov
NeurIPS
2019
Universal Boosting Variational Inference
Trevor Campbell
,
Xinglong Li
ICML
2018
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Trevor Campbell
,
Tamara Broderick
CVPR
2017
Efficient Global Point Cloud Alignment Using Bayesian Nonparametric Mixtures
Julian Straub
,
Trevor Campbell
,
Jonathan P. How
,
John W. Fisher Iii
NeurIPS
2016
Coresets for Scalable Bayesian Logistic Regression
Jonathan Huggins
,
Trevor Campbell
,
Tamara Broderick
NeurIPS
2016
Edge-Exchangeable Graphs and Sparsity
Diana Cai
,
Trevor Campbell
,
Tamara Broderick
CVPR
2015
Small-Variance Nonparametric Clustering on the Hypersphere
Julian Straub
,
Trevor Campbell
,
Jonathan P. How
,
John W. Fisher Iii
NeurIPS
2015
Streaming, Distributed Variational Inference for Bayesian Nonparametrics
Trevor Campbell
,
Julian Straub
,
John W. Fisher Iii
,
Jonathan P How
UAI
2014
Approximate Decentralized Bayesian Inference
Trevor Campbell
,
Jonathan P. How
NeurIPS
2013
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture
Trevor Campbell
,
Miao Liu
,
Brian Kulis
,
Jonathan P How
,
Lawrence Carin