ML Anthology
Authors
Search
About
Cha, Sungmin
22 publications
ICLRW
2025
Cost-Efficient Continual Learning with Sufficient Exemplar Memory
Dong Kyu Cho
,
Taesup Moon
,
Rumi Chunara
,
Kyunghyun Cho
,
Sungmin Cha
TMLR
2025
Hyperparameters in Continual Learning: A Reality Check
Sungmin Cha
,
Kyunghyun Cho
ICLR
2025
Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs
Sungmin Cha
,
Sungjun Cho
,
Dasol Hwang
,
Moontae Lee
NeurIPS
2025
Why Knowledge Distillation Works in Generative Models: A Minimal Working Explanation
Sungmin Cha
,
Kyunghyun Cho
AAAI
2024
Learning to Unlearn: Instance-Wise Unlearning for Pre-Trained Classifiers
Sungmin Cha
,
Sungjun Cho
,
Dasol Hwang
,
Honglak Lee
,
Taesup Moon
,
Moontae Lee
WACV
2024
NCIS: Neural Contextual Iterative Smoothing for Purifying Adversarial Perturbations
Sungmin Cha
,
Naeun Ko
,
Heewoong Choi
,
Youngjoon Yoo
,
Taesup Moon
ICML
2024
Regularizing with Pseudo-Negatives for Continual Self-Supervised Learning
Sungmin Cha
,
Kyunghyun Cho
,
Taesup Moon
ECCV
2024
Salience-Based Adaptive Masking: Revisiting Token Dynamics for Enhanced Pre-Training
Hyesong Choi
,
Hyejin Park
,
Kwang Moo Yi
,
Sungmin Cha
,
Dongbo Min
CoLLAs
2024
Towards More Diverse Evaluation of Class Incremental Learning: Representation Learning Perspective
Sungmin Cha
,
Jihwan Kwak
,
Dongsub Shim
,
Hyunwoo Kim
,
Moontae Lee
,
Honglak Lee
,
Taesup Moon
CoLLAs
2024
Towards Realistic Incremental Scenario in Class Incremental Semantic Segmentation
Jihwan Kwak
,
Sungmin Cha
,
Taesup Moon
NeurIPSW
2024
Towards Robust and Cost-Efficient Knowledge Unlearning for Large Language Models
Sungmin Cha
,
Sungjun Cho
,
Dasol Hwang
,
Moontae Lee
CVPR
2023
Rebalancing Batch Normalization for Exemplar-Based Class-Incremental Learning
Sungmin Cha
,
Sungjun Cho
,
Dasol Hwang
,
Sunwon Hong
,
Moontae Lee
,
Taesup Moon
ICLR
2021
CPR: Classifier-Projection Regularization for Continual Learning
Sungmin Cha
,
Hsiang Hsu
,
Taebaek Hwang
,
Flavio Calmon
,
Taesup Moon
CVPR
2021
FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise
Jaeseok Byun
,
Sungmin Cha
,
Taesup Moon
ICLR
2021
GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images
Sungmin Cha
,
Taeeon Park
,
Byeongjoon Kim
,
Jongduk Baek
,
Taesup Moon
NeurIPS
2021
SSUL: Semantic Segmentation with Unknown Label for Exemplar-Based Class-Incremental Learning
Sungmin Cha
,
Beomyoung Kim
,
YoungJoon Yoo
,
Taesup Moon
ICMLW
2021
Self-Supervised Iterative Contextual Smoothing for Efficient Adversarial Defense Against Gray- and Black-Box Attack
Sungmin Cha
,
Naeun Ko
,
YoungJoon Yoo
,
Taesup Moon
ICMLW
2020
CPR: Classifier-Projection Regularization for Continual Learning
Sungmin Cha
,
Hsiang Hsu
,
Flavio du Pin Calmon
,
and Taesup Moon
NeurIPS
2020
Continual Learning with Node-Importance Based Adaptive Group Sparse Regularization
Sangwon Jung
,
Hongjoon Ahn
,
Sungmin Cha
,
Taesup Moon
NeurIPSW
2020
GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images
Sungmin Cha
,
Taeeon Park
,
Byeongjoon Kim
,
Jongduk Baek
,
Taesup Moon
AAAI
2019
DoPAMINE: Double-Sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling
Sunghwan Joo
,
Sungmin Cha
,
Taesup Moon
NeurIPS
2019
Uncertainty-Based Continual Learning with Adaptive Regularization
Hongjoon Ahn
,
Sungmin Cha
,
Donggyu Lee
,
Taesup Moon