ML Anthology
Authors
Search
About
Chen, Liqun
26 publications
CVPR
2025
A Physics-Informed Blur Learning Framework for Imaging Systems
Liqun Chen
,
Yuxuan Li
,
Jun Dai
,
Jinwei Gu
,
Tianfan Xue
AAAI
2025
DriveEditor: A Unified 3D Information-Guided Framework for Controllable Object Editing in Driving Scenes
Yiyuan Liang
,
Zhiying Yan
,
Liqun Chen
,
Jiahuan Zhou
,
Luxin Yan
,
Sheng Zhong
,
Xu Zou
ICLR
2025
High-Dimension Prototype Is a Better Incremental Object Detection Learner
Yanjie Wang
,
Liqun Chen
,
Tianming Zhao
,
Tao Zhang
,
Guodong Wang
,
Luxin Yan
,
Sheng Zhong
,
Jiahuan Zhou
,
Xu Zou
AAAI
2024
Make Lossy Compression Meaningful for Low-Light Images
Shilv Cai
,
Liqun Chen
,
Sheng Zhong
,
Luxin Yan
,
Jiahuan Zhou
,
Xu Zou
CVPR
2023
Understanding and Constructing Latent Modality Structures in Multi-Modal Representation Learning
Qian Jiang
,
Changyou Chen
,
Han Zhao
,
Liqun Chen
,
Qing Ping
,
Son Dinh Tran
,
Yi Xu
,
Belinda Zeng
,
Trishul Chilimbi
CVPR
2022
Multi-Modal Alignment Using Representation Codebook
Jiali Duan
,
Liqun Chen
,
Son Tran
,
Jinyu Yang
,
Yi Xu
,
Belinda Zeng
,
Trishul Chilimbi
CVPR
2022
Vision-Language Pre-Training with Triple Contrastive Learning
Jinyu Yang
,
Jiali Duan
,
Son Tran
,
Yi Xu
,
Sampath Chanda
,
Liqun Chen
,
Belinda Zeng
,
Trishul Chilimbi
,
Junzhou Huang
NeurIPS
2022
Why Do We Need Large Batchsizes in Contrastive Learning? a Gradient-Bias Perspective
Changyou Chen
,
Jianyi Zhang
,
Yi Xu
,
Liqun Chen
,
Jiali Duan
,
Yiran Chen
,
Son Tran
,
Belinda Zeng
,
Trishul Chilimbi
CVPR
2021
Wasserstein Contrastive Representation Distillation
Liqun Chen
,
Dong Wang
,
Zhe Gan
,
Jingjing Liu
,
Ricardo Henao
,
Lawrence Carin
AAAI
2020
Dynamic Embedding on Textual Networks via a Gaussian Process
Pengyu Cheng
,
Yitong Li
,
Xinyuan Zhang
,
Liqun Chen
,
David E. Carlson
,
Lawrence Carin
ICML
2020
Graph Optimal Transport for Cross-Domain Alignment
Liqun Chen
,
Zhe Gan
,
Yu Cheng
,
Linjie Li
,
Lawrence Carin
,
Jingjing Liu
AAAI
2020
Graph-Driven Generative Models for Heterogeneous Multi-Task Learning
Wenlin Wang
,
Hongteng Xu
,
Zhe Gan
,
Bai Li
,
Guoyin Wang
,
Liqun Chen
,
Qian Yang
,
Wenqi Wang
,
Lawrence Carin
AAAI
2020
Sequence Generation with Optimal-Transport-Enhanced Reinforcement Learning
Liqun Chen
,
Ke Bai
,
Chenyang Tao
,
Yizhe Zhang
,
Guoyin Wang
,
Wenlin Wang
,
Ricardo Henao
,
Lawrence Carin
ICLR
2019
Improving Sequence-to-Sequence Learning via Optimal Transport
Liqun Chen
,
Yizhe Zhang
,
Ruiyi Zhang
,
Chenyang Tao
,
Zhe Gan
,
Haichao Zhang
,
Bai Li
,
Dinghan Shen
,
Changyou Chen
,
Lawrence Carin
NeurIPS
2019
Improving Textual Network Learning with Variational Homophilic Embeddings
Wenlin Wang
,
Chenyang Tao
,
Zhe Gan
,
Guoyin Wang
,
Liqun Chen
,
Xinyuan Zhang
,
Ruiyi Zhang
,
Qian Yang
,
Ricardo Henao
,
Lawrence Carin
NeurIPS
2019
On Fenchel Mini-Max Learning
Chenyang Tao
,
Liqun Chen
,
Shuyang Dai
,
Junya Chen
,
Ke Bai
,
Dong Wang
,
Jianfeng Feng
,
Wenlian Lu
,
Georgiy Bobashev
,
Lawrence Carin
ICML
2019
Variational Annealing of GANs: A Langevin Perspective
Chenyang Tao
,
Shuyang Dai
,
Liqun Chen
,
Ke Bai
,
Junya Chen
,
Chang Liu
,
Ruiyi Zhang
,
Georgiy Bobashev
,
Lawrence Carin Duke
UAI
2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
,
Ruiyi Zhang
,
Wenlin Wang
,
Bai Li
,
Liqun Chen
NeurIPS
2018
Adversarial Text Generation via Feature-Mover's Distance
Liqun Chen
,
Shuyang Dai
,
Chenyang Tao
,
Haichao Zhang
,
Zhe Gan
,
Dinghan Shen
,
Yizhe Zhang
,
Guoyin Wang
,
Ruiyi Zhang
,
Lawrence Carin
ICML
2018
Chi-Square Generative Adversarial Network
Chenyang Tao
,
Liqun Chen
,
Ricardo Henao
,
Jianfeng Feng
,
Lawrence Carin Duke
ICML
2018
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
,
Chunyuan Li
,
Liqun Chen
,
Wenlin Wang
,
Yunchen Pu
,
Lawrence Carin Duke
AISTATS
2018
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
,
Shuyang Dai
,
Yunchen Pu
,
Erjin Zhou
,
Chunyuan Li
,
Qinliang Su
,
Changyou Chen
,
Lawrence Carin
ICML
2018
Variational Inference and Model Selection with Generalized Evidence Bounds
Liqun Chen
,
Chenyang Tao
,
Ruiyi Zhang
,
Ricardo Henao
,
Lawrence Carin Duke
NeurIPS
2017
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
Chunyuan Li
,
Hao Liu
,
Changyou Chen
,
Yuchen Pu
,
Liqun Chen
,
Ricardo Henao
,
Lawrence Carin
NeurIPS
2017
Adversarial Symmetric Variational Autoencoder
Yuchen Pu
,
Weiyao Wang
,
Ricardo Henao
,
Liqun Chen
,
Zhe Gan
,
Chunyuan Li
,
Lawrence Carin
NeurIPS
2017
Triangle Generative Adversarial Networks
Zhe Gan
,
Liqun Chen
,
Weiyao Wang
,
Yuchen Pu
,
Yizhe Zhang
,
Hao Liu
,
Chunyuan Li
,
Lawrence Carin