Cheng, Xiang

22 publications

NeurIPS 2025 From SoftMax to Score: Transformers Can Effectively Implement In-Context Denoising Steps Paul Rosu, Lawrence Carin, Xiang Cheng
ICLR 2025 Graph Transformers Dream of Electric Flow Xiang Cheng, Lawrence Carin, Suvrit Sra
ICML 2025 On Understanding Attention-Based In-Context Learning for Categorical Data Aaron T Wang, William Convertino, Xiang Cheng, Ricardo Henao, Lawrence Carin
ICLR 2024 Linear Attention Is (maybe) All You Need (to Understand Transformer Optimization) Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, Suvrit Sra
ICML 2024 Transformers Implement Functional Gradient Descent to Learn Non-Linear Functions in Context Xiang Cheng, Yuxin Chen, Suvrit Sra
NeurIPS 2023 Fast Conditional Mixing of MCMC Algorithms for Non-Log-Concave Distributions Xiang Cheng, Bohan Wang, Jingzhao Zhang, Yusong Zhu
NeurIPSW 2023 Linear Attention Is (maybe) All You Need (to Understand Transformer Optimization) Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, Suvrit Sra
NeurIPS 2023 Restart Sampling for Improving Generative Processes Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, Tommi Jaakkola
NeurIPS 2023 Transformers Learn to Implement Preconditioned Gradient Descent for In-Context Learning Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra
NeurIPS 2022 Efficient Sampling on Riemannian Manifolds via Langevin MCMC Xiang Cheng, Jingzhao Zhang, Suvrit Sra
AAAI 2021 An End-to-End Solution for Named Entity Recognition in eCommerce Search Xiang Cheng, Mitchell Bowden, Bhushan Ramesh Bhange, Priyanka Goyal, Thomas Packer, Faizan Javed
IJCAI 2021 Differentially Private Correlation Alignment for Domain Adaptation Kaizhong Jin, Xiang Cheng, Jiaxi Yang, Kaiyuan Shen
COLT 2021 Optimal Dimension Dependence of the Metropolis-Adjusted Langevin Algorithm Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, Philippe Rigollet
IJCAI 2020 LISNN: Improving Spiking Neural Networks with Lateral Interactions for Robust Object Recognition Xiang Cheng, Yunzhe Hao, Jiaming Xu, Bo Xu
AAAI 2020 Multi-Task Learning with Generative Adversarial Training for Multi-Passage Machine Reading Comprehension Qiyu Ren, Xiang Cheng, Sen Su
ICML 2020 Stochastic Gradient and Langevin Processes Xiang Cheng, Dong Yin, Peter Bartlett, Michael Jordan
ALT 2018 Convergence of Langevin MCMC in KL-Divergence Xiang Cheng, Peter Bartlett
IJCAI 2018 Exploring Encoder-Decoder Model for Distant Supervised Relation Extraction Sen Su, Ningning Jia, Xiang Cheng, Shuguang Zhu, Ruiping Li
AISTATS 2018 FLAG N' FLARE: Fast Linearly-Coupled Adaptive Gradient Methods Xiang Cheng, Fred (Farbod) Roosta, Stefan Palombo, Peter L. Bartlett, Michael W. Mahoney
COLT 2018 Underdamped Langevin MCMC: A Non-Asymptotic Analysis Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, Michael I. Jordan
IJCAI 2017 Deep Supervised Hashing with Nonlinear Projections Sen Su, Gang Chen, Xiang Cheng, Rong Bi
UAI 2014 First-Order Open-Universe POMDPs Siddharth Srivastava, Stuart Russell, Paul Ruan, Xiang Cheng