ML Anthology
Authors
Search
About
Chiang, Chao-Kai
12 publications
AISTATS
2025
Domain Adaptation and Entanglement: An Optimal Transport Perspective
Okan Koc
,
Alexander Soen
,
Chao-Kai Chiang
,
Masashi Sugiyama
TMLR
2025
Unified Risk Analysis for Weakly Supervised Learning
Chao-Kai Chiang
,
Masashi Sugiyama
AAAI
2024
The Choice of Noninformative Priors for Thompson Sampling in Multiparameter Bandit Models
Jongyeong Lee
,
Chao-Kai Chiang
,
Masashi Sugiyama
NeurIPS
2023
Imitation Learning from Vague Feedback
Xin-Qiang Cai
,
Yu-Jie Zhang
,
Chao-Kai Chiang
,
Masashi Sugiyama
ICML
2023
Optimality of Thompson Sampling with Noninformative Priors for Pareto Bandits
Jongyeong Lee
,
Junya Honda
,
Chao-Kai Chiang
,
Masashi Sugiyama
IJCAI
2019
Hyper-Parameter Tuning Under a Budget Constraint
Zhiyun Lu
,
Liyu Chen
,
Chao-Kai Chiang
,
Fei Sha
NeurIPS
2017
Federated Multi-Task Learning
Virginia Smith
,
Chao-Kai Chiang
,
Maziar Sanjabi
,
Ameet S Talwalkar
COLT
2016
An Algorithm with Nearly Optimal Pseudo-Regret for Both Stochastic and Adversarial Bandits
Peter Auer
,
Chao-Kai Chiang
AISTATS
2016
Pareto Front Identification from Stochastic Bandit Feedback
Peter Auer
,
Chao-Kai Chiang
,
Ronald Ortner
,
Madalina M. Drugan
ACML
2014
Pseudo-Reward Algorithms for Contextual Bandits with Linear Payoff Functions
Ku-Chun Chou
,
Hsuan-Tien Lin
,
Chao-Kai Chiang
,
Chi-Jen Lu
COLT
2013
Beating Bandits in Gradually Evolving Worlds
Chao-Kai Chiang
,
Chia-Jung Lee
,
Chi-Jen Lu
COLT
2012
Online Optimization with Gradual Variations
Chao-Kai Chiang
,
Tianbao Yang
,
Chia-Jung Lee
,
Mehrdad Mahdavi
,
Chi-Jen Lu
,
Rong Jin
,
Shenghuo Zhu