ML Anthology
Authors
Search
About
Cho, Taehyun
10 publications
ICML
2025
Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation
Taehyun Cho
,
Seungyub Han
,
Seokhun Ju
,
Dohyeong Kim
,
Kyungjae Lee
,
Jungwoo Lee
NeurIPS
2025
Pareto Optimal Risk-Agnostic Distributional Bandits with Heavy-Tail Rewards
Kyungjae Lee
,
Dohyeong Kim
,
Taehyun Cho
,
Chaeyeon Kim
,
Yunkyung Ko
,
Seungyub Han
,
Seokhun Ju
,
Dohyeok Lee
,
Sungbin Lim
ICML
2025
Policy-Labeled Preference Learning: Is Preference Enough for RLHF?
Taehyun Cho
,
Seokhun Ju
,
Seungyub Han
,
Dohyeong Kim
,
Kyungjae Lee
,
Jungwoo Lee
NeurIPS
2024
Spectral-Risk Safe Reinforcement Learning with Convergence Guarantees
Dohyeong Kim
,
Taehyun Cho
,
Seungyub Han
,
Hojun Chung
,
Kyungjae Lee
,
Songhwai Oh
UAI
2023
On the Convergence of Continual Learning with Adaptive Methods
Seungyub Han
,
Yeongmo Kim
,
Taehyun Cho
,
Jungwoo Lee
NeurIPS
2023
Pitfall of Optimism: Distributional Reinforcement Learning by Randomizing Risk Criterion
Taehyun Cho
,
Seungyub Han
,
Heesoo Lee
,
Kyungjae Lee
,
Jungwoo Lee
NeurIPS
2023
SPQR: Controlling Q-Ensemble Independence with Spiked Random Model for Reinforcement Learning
Dohyeok Lee
,
Seungyub Han
,
Taehyun Cho
,
Jungwoo Lee
NeurIPSW
2022
Adaptive Methods for Nonconvex Continual Learning
Seungyub Han
,
Yeongmo Kim
,
Taehyun Cho
,
Jungwoo Lee
NeurIPSW
2022
Perturbed Quantile Regression for Distributional Reinforcement Learning
Taehyun Cho
,
Seungyub Han
,
Heesoo Lee
,
Kyungjae Lee
,
Jungwoo Lee
ICML
2021
Chebyshev Polynomial Codes: Task Entanglement-Based Coding for Distributed Matrix Multiplication
Sangwoo Hong
,
Heecheol Yang
,
Youngseok Yoon
,
Taehyun Cho
,
Jungwoo Lee