Choromanska, Anna

26 publications

CVPRW 2025 Task-Level Contrastiveness for Cross-Domain Few-Shot Learning Kristi Topollai, Anna Choromanska
UAI 2024 AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop Jing Wang, Yunfei Teng, Anna Choromanska
AISTATS 2024 GRAWA: Gradient-Based Weighted Averaging for Distributed Training of Deep Learning Models Tolga Dimlioglu, Anna Choromanska
CVPRW 2024 TAME: Task Agnostic Continual Learning Using Multiple Experts Haoran Zhu, Maryam Majzoubi, Arihant Jain, Anna Choromanska
CVPRW 2024 Wake-Sleep Energy Based Models for Continual Learning Vaibhav Singh, Anna Choromanska, Shuang Li, Yilun Du
AISTATS 2022 Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape Devansh Bisla, Jing Wang, Anna Choromanska
AAAI 2022 Backdoor Attacks on the DNN Interpretation System Shihong Fang, Anna Choromanska
ECML-PKDD 2022 Overcoming Catastrophic Forgetting via Direction-Constrained Optimization Yunfei Teng, Anna Choromanska, Murray Campbell, Songtao Lu, Parikshit Ram, Lior Horesh
CVPRW 2021 A Theoretical-Empirical Approach to Estimating Sample Complexity of DNNs Devansh Bisla, Apoorva Nandini Saridena, Anna Choromanska
AISTATS 2020 LdSM: Logarithm-Depth Streaming Multi-Label Decision Trees Maryam Majzoubi, Anna Choromanska
ICML 2020 Learning to Score Behaviors for Guided Policy Optimization Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Krzysztof Choromanski, Anna Choromanska, Michael Jordan
ICML 2019 Beyond Backprop: Online Alternating Minimization with Auxiliary Variables Anna Choromanska, Benjamin Cowen, Sadhana Kumaravel, Ronny Luss, Mattia Rigotti, Irina Rish, Paolo Diachille, Viatcheslav Gurev, Brian Kingsbury, Ravi Tejwani, Djallel Bouneffouf
MLJ 2019 LSALSA: Accelerated Source Separation via Learned Sparse Coding Benjamin Cowen, Apoorva Nandini Saridena, Anna Choromanska
CVPRW 2019 Towards Automated Melanoma Detection with Deep Learning: Data Purification and Augmentation Devansh Bisla, Anna Choromanska, Russell S. Berman, Jennifer A. Stein, David Polsky
ICLR 2017 Entropy-SGD: Biasing Gradient Descent into Wide Valleys Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Levent Sagun, Riccardo Zecchina
ICML 2017 Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation Yacine Jernite, Anna Choromanska, David Sontag
AISTATS 2017 Structured Adaptive and Random Spinners for Fast Machine Learning Computations Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Francois Fagan, Cédric Gouy-Pailler, Anne Morvan, Nourhan Sakr, Tamás Sarlós, Jamal Atif
ICML 2016 Binary Embeddings with Structured Hashed Projections Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony Jebara, Sanjiv Kumar, Yann LeCun
ICLR 2015 Deep Learning with Elastic Averaging SGD Sixin Zhang, Anna Choromanska, Yann LeCun
COLT 2015 Open Problem: The Landscape of the Loss Surfaces of Multilayer Networks Anna Choromanska, Yann LeCun, Gérard Ben Arous
AISTATS 2015 The Loss Surfaces of Multilayer Networks Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, Yann LeCun
ICLR 2014 Semistochastic Quadratic Bound Methods for Convex and Nonconvex Learning Problems Aleksandr Y. Aravkin, Anna Choromanska, Dimitri Kanevsky, Tony Jebara
ALT 2013 Differentially-Private Learning of Low Dimensional Manifolds Anna Choromanska, Krzysztof Choromanski, Geetha Jagannathan, Claire Monteleoni
ALT 2013 Fast Spectral Clustering via the Nyström Method Anna Choromanska, Tony Jebara, Hyungtae Kim, Mahesh Mohan, Claire Monteleoni
NeurIPS 2012 Majorization for CRFs and Latent Likelihoods Tony Jebara, Anna Choromanska
AISTATS 2012 Online Clustering with Experts Anna Choromanska, Claire Monteleoni