Choromanski, Krzysztof

29 publications

NeurIPS 2024 Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers Krzysztof Choromanski, Arijit Sehanobish, Somnath Basu Roy Chowdhury, Han Lin, Avinava Dubey, Tamas Sarlos, Snigdha Chaturvedi
AISTATS 2024 Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers Krzysztof Choromanski, Shanda Li, Valerii Likhosherstov, Kumar Avinava Dubey, Shengjie Luo, Di He, Yiming Yang, Tamas Sarlos, Thomas Weingarten, Adrian Weller
NeurIPS 2024 Structured Unrestricted-Rank Matrices for Parameter Efficient Finetuning Arijit Sehanobish, Avinava Dubey, Krzysztof Choromanski, Somnath Basu Roy Chowdhury, Deepali Jain, Vikas Sindhwani, Snigdha Chaturvedi
AAAI 2023 On the Expressive Flexibility of Self-Attention Matrices Valerii Likhosherstov, Krzysztof Choromanski, Adrian Weller
ICML 2022 From Block-Toeplitz Matrices to Differential Equations on Graphs: Towards a General Theory for Scalable Masked Transformers Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosherstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, Thomas Weingarten
AISTATS 2021 CWY Parametrization: A Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices Valerii Likhosherstov, Jared Davis, Krzysztof Choromanski, Adrian Weller
ICML 2021 Catformer: Designing Stable Transformers via Sensitivity Analysis Jared Q Davis, Albert Gu, Krzysztof Choromanski, Tri Dao, Christopher Re, Chelsea Finn, Percy Liang
ICML 2021 Debiasing a First-Order Heuristic for Approximate Bi-Level Optimization Valerii Likhosherstov, Xingyou Song, Krzysztof Choromanski, Jared Q Davis, Adrian Weller
UAI 2021 Towards Tractable Optimism in Model-Based Reinforcement Learning Aldo Pacchiano, Philip Ball, Jack Parker-Holder, Krzysztof Choromanski, Stephen Roberts
ICLR 2020 ES-MAML: Simple Hessian-Free Meta Learning Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, Yunhao Tang
ICMLW 2020 Effective Diversity in Population Based Reinforcement Learning Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, Stephen Roberts
ICML 2020 Learning to Score Behaviors for Guided Policy Optimization Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Krzysztof Choromanski, Anna Choromanska, Michael Jordan
AISTATS 2020 Practical Nonisotropic Monte Carlo Sampling in High Dimensions via Determinantal Point Processes Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang
ICML 2020 Ready Policy One: World Building Through Active Learning Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, Stephen Roberts
ICML 2020 Stochastic Flows and Geometric Optimization on the Orthogonal Group Krzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Bahamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano, Tamas Sarlos, Adrian Weller, Vikas Sindhwani
ICLRW 2020 Time Dependence in Non-Autonomous Neural ODEs Jared Quincy Davis, Krzysztof Choromanski, Vikas Sindhwani, Jake Varley, Honglak Lee, Jean-Jacques Slotine, Valerii Likhosterov, Adrian Weller, Ameesh Makadia
AISTATS 2020 Variance Reduction for Evolution Strategies via Structured Control Variates Yunhao Tang, Krzysztof Choromanski, Alp Kucukelbir
AISTATS 2019 KAMA-NNs: Low-Dimensional Rotation Based Neural Networks Krzysztof Choromanski, Aldo Pacchiano, Jeffrey Pennington, Yunhao Tang
AISTATS 2019 Orthogonal Estimation of Wasserstein Distances Mark Rowland, Jiri Hron, Yunhao Tang, Krzysztof Choromanski, Tamas Sarlos, Adrian Weller
CoRL 2019 Provably Robust Blackbox Optimization for Reinforcement Learning Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Deepali Jain, Yuxiang Yang, Atil Iscen, Jasmine Hsu, Vikas Sindhwani
ICML 2019 Unifying Orthogonal Monte Carlo Methods Krzysztof Choromanski, Mark Rowland, Wenyu Chen, Adrian Weller
ICLR 2018 Initialization Matters: Orthogonal Predictive State Recurrent Neural Networks Krzysztof Choromanski, Carlton Downey, Byron Boots
ICML 2018 Structured Evolution with Compact Architectures for Scalable Policy Optimization Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, Adrian Weller
AISTATS 2018 The Geometry of Random Features Krzysztof Choromanski, Mark Rowland, Tamás Sarlós, Vikas Sindhwani, Richard E. Turner, Adrian Weller
AISTATS 2017 Structured Adaptive and Random Spinners for Fast Machine Learning Computations Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Francois Fagan, Cédric Gouy-Pailler, Anne Morvan, Nourhan Sakr, Tamás Sarlós, Jamal Atif
ICML 2016 Binary Embeddings with Structured Hashed Projections Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony Jebara, Sanjiv Kumar, Yann LeCun
AISTATS 2016 Quantization Based Fast Inner Product Search Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, David Simcha
ICML 2016 Recycling Randomness with Structure for Sublinear Time Kernel Expansions Krzysztof Choromanski, Vikas Sindhwani
ALT 2013 Differentially-Private Learning of Low Dimensional Manifolds Anna Choromanska, Krzysztof Choromanski, Geetha Jagannathan, Claire Monteleoni