ML Anthology
Authors
Search
About
Cohen-Addad, Vincent
39 publications
ICML
2025
Algorithms and Hardness for Active Learning on Graphs
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Simon Meierhans
ICML
2025
Correlation Clustering Beyond the Pivot Algorithm
Soheil Behnezhad
,
Moses Charikar
,
Vincent Cohen-Addad
,
Alma Ghafari
,
Weiyun Ma
NeurIPS
2025
Efficient Data Selection at Scale via Influence Distillation
Mahdi Nikdan
,
Vincent Cohen-Addad
,
Dan Alistarh
,
Vahab Mirrokni
ICLR
2025
Fair Clustering in the Sliding Window Model
Vincent Cohen-Addad
,
Shaofeng H.-C. Jiang
,
Qiaoyuan Yang
,
Yubo Zhang
,
Samson Zhou
COLT
2025
Metric Embeddings Beyond Bi-Lipschitz Distortion via Sherali-Adams
Ainesh Bakshi
,
Vincent Cohen-Addad
,
Rajesh Jayaram
,
Samuel B. Hopkins
,
Silvio Lattanzi
ICML
2025
REINFORCE Adversarial Attacks on Large Language Models: An Adaptive, Distributional, and Semantic Objective
Simon Geisler
,
Tom Wollschläger
,
M. H. I. Abdalla
,
Vincent Cohen-Addad
,
Johannes Gasteiger
,
Stephan Günnemann
ICML
2025
Scalable Private Partition Selection via Adaptive Weighting
Justin Y. Chen
,
Vincent Cohen-Addad
,
Alessandro Epasto
,
Morteza Zadimoghaddam
ICML
2025
The Geometry of Refusal in Large Language Models: Concept Cones and Representational Independence
Tom Wollschläger
,
Jannes Elstner
,
Simon Geisler
,
Vincent Cohen-Addad
,
Stephan Günnemann
,
Johannes Gasteiger
ICML
2024
A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering
Vincent Cohen-Addad
,
Tommaso D’Orsi
,
Aida Mousavifar
AISTATS
2024
A Scalable Algorithm for Individually Fair K-Means Clustering
MohammadHossein Bateni
,
Vincent Cohen-Addad
,
Alessandro Epasto
,
Silvio Lattanzi
ICML
2024
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
Kyriakos Axiotis
,
Vincent Cohen-Addad
,
Monika Henzinger
,
Sammy Jerome
,
Vahab Mirrokni
,
David Saulpic
,
David Woodruff
,
Michael Wunder
ICML
2024
Dynamic Correlation Clustering in Sublinear Update Time
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Andreas Maggiori
,
Nikos Parotsidis
NeurIPS
2024
Learning-Augmented Approximation Algorithms for Maximum Cut and Related Problems
Vincent Cohen-Addad
,
Tommaso d'Orsi
,
Anupam Gupta
,
Euiwoong Lee
,
Debmalya Panigrahi
ICML
2024
Multi-View Stochastic Block Models
Vincent Cohen-Addad
,
Tommaso D’Orsi
,
Silvio Lattanzi
,
Rajai Nasser
ICML
2024
Perturb-and-Project: Differentially Private Similarities and Marginals
Vincent Cohen-Addad
,
Tommaso D’Orsi
,
Alessandro Epasto
,
Vahab Mirrokni
,
Peilin Zhong
ICML
2023
Differentially Private Hierarchical Clustering with Provable Approximation Guarantees
Jacob Imola
,
Alessandro Epasto
,
Mohammad Mahdian
,
Vincent Cohen-Addad
,
Vahab Mirrokni
NeurIPS
2023
Multi-Swap K-Means++
Lorenzo Beretta
,
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Nikos Parotsidis
NeurIPS
2023
Private Estimation Algorithms for Stochastic Block Models and Mixture Models
Hongjie Chen
,
Vincent Cohen-Addad
,
Tommaso d’Orsi
,
Alessandro Epasto
,
Jacob Imola
,
David Steurer
,
Stefan Tiegel
AISTATS
2022
On Facility Location Problem in the Local Differential Privacy Model
Vincent Cohen-Addad
,
Yunus Esencayi
,
Chenglin Fan
,
Marco Gaboradi
,
Shi Li
,
Di Wang
COLT
2022
Community Recovery in the Degree-Heterogeneous Stochastic Block Model
Vincent Cohen-Addad
,
Frederik Mallmann-Trenn
,
David Saulpic
NeurIPS
2022
Improved Coresets for Euclidean $k$-Means
Vincent Cohen-Addad
,
Kasper Green Larsen
,
David Saulpic
,
Chris Schwiegelshohn
,
Omar Ali Sheikh-Omar
ICML
2022
Massively Parallel $k$-Means Clustering for Perturbation Resilient Instances
Vincent Cohen-Addad
,
Vahab Mirrokni
,
Peilin Zhong
NeurIPS
2022
Near-Optimal Correlation Clustering with Privacy
Vincent Cohen-Addad
,
Chenglin Fan
,
Silvio Lattanzi
,
Slobodan Mitrovic
,
Ashkan Norouzi-Fard
,
Nikos Parotsidis
,
Jakub M Tarnawski
NeurIPS
2022
Near-Optimal Private and Scalable $k$-Clustering
Vincent Cohen-Addad
,
Alessandro Epasto
,
Vahab Mirrokni
,
Shyam Narayanan
,
Peilin Zhong
ICML
2022
Online and Consistent Correlation Clustering
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Andreas Maggiori
,
Nikos Parotsidis
NeurIPSW
2022
Scalable and Improved Algorithms for Individually Fair Clustering
Mohammadhossein Bateni
,
Vincent Cohen-Addad
,
Alessandro Epasto
,
Silvio Lattanzi
AISTATS
2021
Online K-Means Clustering
Vincent Cohen-Addad
,
Benjamin Guedj
,
Varun Kanade
,
Guy Rom
ICML
2021
Correlation Clustering in Constant Many Parallel Rounds
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Slobodan Mitrović
,
Ashkan Norouzi-Fard
,
Nikos Parotsidis
,
Jakub Tarnawski
NeurIPS
2021
Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces
Vincent Cohen-Addad
,
David Saulpic
,
Chris Schwiegelshohn
ICML
2021
Improving Ultrametrics Embeddings Through Coresets
Vincent Cohen-Addad
,
Rémi De Joannis De Verclos
,
Guillaume Lagarde
NeurIPS
2021
Parallel and Efficient Hierarchical K-Median Clustering
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Ashkan Norouzi-Fard
,
Christian Sohler
,
Ola Svensson
NeurIPS
2020
Fast and Accurate $k$-Means++ via Rejection Sampling
Vincent Cohen-Addad
,
Silvio Lattanzi
,
Ashkan Norouzi-Fard
,
Christian Sohler
,
Ola Svensson
ICML
2020
On Efficient Low Distortion Ultrametric Embedding
Vincent Cohen-Addad
,
C. S. Karthik
,
Guillaume Lagarde
NeurIPS
2020
On the Power of Louvain in the Stochastic Block Model
Vincent Cohen-Addad
,
Adrian Kosowski
,
Frederik Mallmann-Trenn
,
David Saulpic
NeurIPS
2019
Fully Dynamic Consistent Facility Location
Vincent Cohen-Addad
,
Niklas Oskar D Hjuler
,
Nikos Parotsidis
,
David Saulpic
,
Chris Schwiegelshohn
NeurIPS
2019
Subquadratic High-Dimensional Hierarchical Clustering
Amir Abboud
,
Vincent Cohen-Addad
,
Hussein Houdrouge
NeurIPS
2018
Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms
Vincent Cohen-Addad
,
Varun Kanade
,
Frederik Mallmann-Trenn
NeurIPS
2017
Hierarchical Clustering Beyond the Worst-Case
Vincent Cohen-Addad
,
Varun Kanade
,
Frederik Mallmann-Trenn
AISTATS
2017
Online Optimization of Smoothed Piecewise Constant Functions
Vincent Cohen-Addad
,
Varun Kanade