ML Anthology
Authors
Search
About
Couillet, Romain
23 publications
JMLR
2025
A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation
Hugo Lebeau
,
Florent Chatelain
,
Romain Couillet
AISTATS
2023
Asymptotic Bayes Risk of Semi-Supervised Multitask Learning on Gaussian Mixture
Minh-Toan Nguyen
,
Romain Couillet
ICML
2023
PCA-Based Multi-Task Learning: A Random Matrix Approach
Malik Tiomoko
,
Romain Couillet
,
Frederic Pascal
ICML
2022
A Random Matrix Analysis of Data Stream Clustering: Coping with Limited Memory Resources
Hugo Lebeau
,
Romain Couillet
,
Florent Chatelain
JMLR
2022
A Random Matrix Perspective on Random Tensors
José Henrique de M. Goulart
,
Romain Couillet
,
Pierre Comon
ICLR
2022
Random Matrices in Service of ML Footprint: Ternary Random Features with No Performance Loss
Hafiz Tiomoko Ali
,
Zhenyu Liao
,
Romain Couillet
AISTATS
2021
The Unexpected Deterministic and Universal Behavior of Large SoftMax Classifiers
Mohamed El Amine Seddik
,
Cosme Louart
,
Romain Couillet
,
Mohamed Tamaazousti
JMLR
2021
A Unified Framework for Spectral Clustering in Sparse Graphs
Lorenzo Dall'Amico
,
Romain Couillet
,
Nicolas Tremblay
JMLR
2021
Consistent Semi-Supervised Graph Regularization for High Dimensional Data
Xiaoyi Mai
,
Romain Couillet
ICLR
2021
Deciphering and Optimizing Multi-Task Learning: A Random Matrix Approach
Malik Tiomoko
,
Hafiz Tiomoko Ali
,
Romain Couillet
ICLR
2021
Sparse Quantized Spectral Clustering
Zhenyu Liao
,
Romain Couillet
,
Michael W. Mahoney
ICML
2021
Two-Way Kernel Matrix Puncturing: Towards Resource-Efficient PCA and Spectral Clustering
Romain Couillet
,
Florent Chatelain
,
Nicolas Le Bihan
ICMLW
2020
A Random Matrix Analysis of Learning with Α-Dropout
Mohamed El Amine Seddik
,
Romain Couillet
,
Mohamed Tamaazousti
NeurIPS
2020
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
Zhenyu Liao
,
Romain Couillet
,
Michael W. Mahoney
NeurIPS
2020
Community Detection in Sparse Time-Evolving Graphs with a Dynamical Bethe-Hessian
Lorenzo Dall'Amico
,
Romain Couillet
,
Nicolas Tremblay
ICML
2020
Random Matrix Theory Proves That Deep Learning Representations of GAN-Data Behave as Gaussian Mixtures
Mohamed El Amine Seddik
,
Cosme Louart
,
Mohamed Tamaazousti
,
Romain Couillet
ICLR
2019
A Kernel Random Matrix-Based Approach for Sparse PCA
Mohamed El Amine Seddik
,
Mohamed Tamaazousti
,
Romain Couillet
ICML
2019
Random Matrix Improved Covariance Estimation for a Large Class of Metrics
Malik Tiomoko
,
Romain Couillet
,
Florent Bouchard
,
Guillaume Ginolhac
NeurIPS
2019
Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs
Lorenzo Dall'Amico
,
Romain Couillet
,
Nicolas Tremblay
ICML
2018
On the Spectrum of Random Features Maps of High Dimensional Data
Zhenyu Liao
,
Romain Couillet
ICML
2018
The Dynamics of Learning: A Random Matrix Approach
Zhenyu Liao
,
Romain Couillet
ICML
2016
A Random Matrix Approach to Echo-State Neural Networks
Romain Couillet
,
Gilles Wainrib
,
Hafiz Tiomoko Ali
,
Harry Sevi
JMLR
2016
The Asymptotic Performance of Linear Echo State Neural Networks
Romain Couillet
,
Gilles Wainrib
,
Harry Sevi
,
Hafiz Tiomoko Ali