ML Anthology
Authors
Search
About
Dai, Zihang
17 publications
ICLR
2022
SimVLM: Simple Visual Language Model Pretraining with Weak Supervision
Zirui Wang
,
Jiahui Yu
,
Adams Wei Yu
,
Zihang Dai
,
Yulia Tsvetkov
,
Yuan Cao
ICML
2022
Transformer Quality in Linear Time
Weizhe Hua
,
Zihang Dai
,
Hanxiao Liu
,
Quoc Le
NeurIPS
2021
CoAtNet: Marrying Convolution and Attention for All Data Sizes
Zihang Dai
,
Hanxiao Liu
,
Quoc V Le
,
Mingxing Tan
NeurIPS
2021
Combiner: Full Attention Transformer with Sparse Computation Cost
Hongyu Ren
,
Hanjun Dai
,
Zihang Dai
,
Mengjiao Yang
,
Jure Leskovec
,
Dale Schuurmans
,
Bo Dai
CVPR
2021
Meta Pseudo Labels
Hieu Pham
,
Zihang Dai
,
Qizhe Xie
,
Quoc V. Le
NeurIPS
2021
Pay Attention to MLPs
Hanxiao Liu
,
Zihang Dai
,
David So
,
Quoc V Le
NeurIPS
2021
Searching for Efficient Transformers for Language Modeling
David So
,
Wojciech Mańke
,
Hanxiao Liu
,
Zihang Dai
,
Noam Shazeer
,
Quoc V Le
ICLR
2020
A Mutual Information Maximization Perspective of Language Representation Learning
Lingpeng Kong
,
Cyprien de Masson d'Autume
,
Wang Ling
,
Lei Yu
,
Zihang Dai
,
Dani Yogatama
NeurIPS
2020
Funnel-Transformer: Filtering Out Sequential Redundancy for Efficient Language Processing
Zihang Dai
,
Guokun Lai
,
Yiming Yang
,
Quoc V. Le
NeurIPS
2020
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
,
Zihang Dai
,
Eduard Hovy
,
Thang Luong
,
Quoc V. Le
AAAI
2019
Fast and Simple Mixture of Softmaxes with BPE and Hybrid-LightRNN for Language Generation
Xiang Kong
,
Qizhe Xie
,
Zihang Dai
,
Eduard H. Hovy
NeurIPS
2019
Re-Examination of the Role of Latent Variables in Sequence Modeling
Guokun Lai
,
Zihang Dai
,
Yiming Yang
,
Shinjae Yoo
NeurIPS
2019
XLNet: Generalized Autoregressive Pretraining for Language Understanding
Zhilin Yang
,
Zihang Dai
,
Yiming Yang
,
Jaime Carbonell
,
Ruslan Salakhutdinov
,
Quoc V Le
ICLR
2018
Breaking the SoftMax Bottleneck: A High-Rank RNN Language Model
Zhilin Yang
,
Zihang Dai
,
Ruslan Salakhutdinov
,
William W. Cohen
ICLR
2017
Calibrating Energy-Based Generative Adversarial Networks
Zihang Dai
,
Amjad Almahairi
,
Philip Bachman
,
Eduard H. Hovy
,
Aaron C. Courville
NeurIPS
2017
Controllable Invariance Through Adversarial Feature Learning
Qizhe Xie
,
Zihang Dai
,
Yulun Du
,
Eduard Hovy
,
Graham Neubig
NeurIPS
2017
Good Semi-Supervised Learning That Requires a Bad GAN
Zihang Dai
,
Zhilin Yang
,
Fan Yang
,
William W. Cohen
,
Ruslan Salakhutdinov