ML Anthology
Authors
Search
About
d’Alche-Buc, Florence
11 publications
AISTATS
2024
Sketch in, Sketch Out: Accelerating Both Learning and Inference for Structured Prediction with Kernels
Tamim El Ahmad
,
Luc Brogat-Motte
,
Pierre Laforgue
,
Florence d’Alché-Buc
ICML
2022
Functional Output Regression with Infimal Convolution: Exploring the Huber and $ε$-Insensitive Losses
Alex Lambert
,
Dimitri Bouche
,
Zoltan Szabo
,
Florence D’Alché-Buc
ICML
2022
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
,
Rémi Flamary
,
Celine Brouard
,
Juho Rousu
,
Florence D’Alché-Buc
AISTATS
2021
Nonlinear Functional Output Regression: A Dictionary Approach
Dimitri Bouche
,
Marianne Clausel
,
François Roueff
,
Florence d’Alché-Buc
AISTATS
2021
When OT Meets MoM: Robust Estimation of Wasserstein Distance
Guillaume Staerman
,
Pierre Laforgue
,
Pavlo Mozharovskyi
,
Florence d’Alché-Buc
ICML
2020
Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
Pierre Laforgue
,
Alex Lambert
,
Luc Brogat-Motte
,
Florence D’Alché-Buc
AISTATS
2019
Autoencoding Any Data Through Kernel Autoencoders
Pierre Laforgue
,
Stéphan Clémençon
,
Florence d’Alche-Buc
ACML
2019
Functional Isolation Forest
Guillaume Staerman
,
Pavlo Mozharovskyi
,
Stephan Clémençon
,
Florence d’Alché-Buc
AISTATS
2019
Infinite Task Learning in RKHSs
Romain Brault
,
Alex Lambert
,
Zoltan Szabo
,
Maxime Sangnier
,
Florence d’Alche-Buc
ICML
2018
Structured Output Learning with Abstention: Application to Accurate Opinion Prediction
Alexandre Garcia
,
Chloé Clavel
,
Slim Essid
,
Florence d’Alche-Buc
ACML
2017
Data Sparse Nonparametric Regression with $ε$-Insensitive Losses
Maxime Sangnier
,
Olivier Fercoq
,
Florence d’Alché-Buc