Daniely, Amit

38 publications

COLT 2025 Existence of Adversarial Examples for Random Convolutional Networks via Isoperimetric Inequalities on $\mathbb{SO}(d)$ Amit Daniely
AISTATS 2025 Locally Optimal Descent for Dynamic Stepsize Scheduling Gilad Yehudai, Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, Mariano Schain
NeurIPS 2025 Online Learning of Neural Networks Amit Daniely, Idan Mehalel, Elchanan Mossel
ALT 2024 On the Sample Complexity of Two-Layer Networks: Lipschitz vs. Element-Wise Lipschitz Activation Amit Daniely, Elad Granot
ALT 2024 RedEx: Beyond Fixed Representation Methods via Convex Optimization Amit Daniely, Mariano Schain, Gilad Yehudai
ICLR 2023 An Exact Poly-Time Membership-Queries Algorithm for Extracting a Three-Layer ReLU Network Amit Daniely, Elad Granot
NeurIPS 2023 Computational Complexity of Learning Neural Networks: Smoothness and Degeneracy Amit Daniely, Nati Srebro, Gal Vardi
NeurIPS 2023 Most Neural Networks Are Almost Learnable Amit Daniely, Nati Srebro, Gal Vardi
NeurIPS 2023 Multiclass Boosting: Simple and Intuitive Weak Learning Criteria Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran
COLT 2022 Monotone Learning Olivier J Bousquet, Amit Daniely, Haim Kaplan, Yishay Mansour, Shay Moran, Uri Stemmer
NeurIPS 2021 Asynchronous Stochastic Optimization Robust to Arbitrary Delays Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, Mariano Schain
COLT 2021 From Local Pseudorandom Generators to Hardness of Learning Amit Daniely, Gal Vardi
ALT 2020 Distribution Free Learning with Local Queries Galit Bary-Weisberg, Amit Daniely, Shai Shalev-Shwartz
NeurIPS 2020 Hardness of Learning Neural Networks with Natural Weights Amit Daniely, Gal Vardi
COLT 2020 ID3 Learns Juntas for Smoothed Product Distributions Alon Brutzkus, Amit Daniely, Eran Malach
NeurIPS 2020 Learning Parities with Neural Networks Amit Daniely, Eran Malach
NeurIPS 2020 Most ReLU Networks Suffer from $\ell^2$ Adversarial Perturbations Amit Daniely, Hadas Shacham
NeurIPS 2020 Neural Networks Learning and Memorization with (almost) No Over-Parameterization Amit Daniely
ICLR 2020 The Implicit Bias of Depth: How Incremental Learning Drives Generalization Daniel Gissin, Shai Shalev-Shwartz, Amit Daniely
ALT 2019 Competitive Ratio vs Regret Minimization: Achieving the Best of Both Worlds Amit Daniely, Yishay Mansour
NeurIPS 2019 Generalization Bounds for Neural Networks via Approximate Description Length Amit Daniely, Elad Granot
AISTATS 2019 Learning Rules-First Classifiers Deborah Cohen, Amit Daniely, Amir Globerson, Gal Elidan
NeurIPS 2019 Locally Private Learning Without Interaction Requires Separation Amit Daniely, Vitaly Feldman
COLT 2019 Open Problem: Is Margin Sufficient for Non-Interactive Private Distributed Learning? Amit Daniely, Vitaly Feldman
COLT 2017 Depth Separation for Neural Networks Amit Daniely
NeurIPS 2017 SGD Learns the Conjugate Kernel Class of the Network Amit Daniely
ICLR 2017 Short and Deep: Sketching and Neural Networks Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar
COLT 2016 Complexity Theoretic Limitations on Learning DNF's Amit Daniely, Shai Shalev-Shwartz
NeurIPS 2016 Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity Amit Daniely, Roy Frostig, Yoram Singer
COLT 2015 A PTAS for Agnostically Learning Halfspaces Amit Daniely
JMLR 2015 Multiclass Learnability and the ERM Principle Amit Daniely, Sivan Sabato, Shai Ben-David, Shai Shalev-Shwartz
ICML 2015 Strongly Adaptive Online Learning Amit Daniely, Alon Gonen, Shai Shalev-Shwartz
COLT 2014 Optimal Learners for Multiclass Problems Amit Daniely, Shai Shalev-Shwartz
COLT 2014 The Complexity of Learning Halfspaces Using Generalized Linear Methods Amit Daniely, Nati Linial, Shai Shalev-Shwartz
NeurIPS 2013 More Data Speeds up Training Time in Learning Halfspaces over Sparse Vectors Amit Daniely, Nati Linial, Shai Shalev-Shwartz
COLT 2013 The Price of Bandit Information in Multiclass Online Classification Amit Daniely, Tom Helbertal
NeurIPS 2012 Multiclass Learning Approaches: A Theoretical Comparison with Implications Amit Daniely, Sivan Sabato, Shai S. Shwartz
COLT 2011 Multiclass Learnability and the ERM Principle Amit Daniely, Sivan Sabato, Shai Ben-David, Shai Shalev-Shwartz