Das, Payel

48 publications

ICML 2025 Aligning Protein Conformation Ensemble Generation with Physical Feedback Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Aurelie Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang
IJCAI 2025 Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond Kehan Guo, Yili Shen, Gisela Abigail Gonzalez-Montiel, Yue Huang, Yujun Zhou, Mihir Surve, Zhichun Guo, Payel Das, Nitesh V. Chawla, Olaf Wiest, Xiangliang Zhang
ICLR 2025 Large Language Models Can Become Strong Self-Detoxifiers Ching-Yun Ko, Pin-Yu Chen, Payel Das, Youssef Mroueh, Soham Dan, Georgios Kollias, Subhajit Chaudhury, Tejaswini Pedapati, Luca Daniel
ICML 2025 Position: Theory of Mind Benchmarks Are Broken for Large Language Models Matthew Riemer, Zahra Ashktorab, Djallel Bouneffouf, Payel Das, Miao Liu, Justin D. Weisz, Murray Campbell
ICLR 2025 SEAL: Safety-Enhanced Aligned LLM Fine-Tuning via Bilevel Data Selection Han Shen, Pin-Yu Chen, Payel Das, Tianyi Chen
TMLR 2024 Attribute Graphs Underlying Molecular Generative Models: Path to Learning with Limited Data Samuel C Hoffman, Payel Das, Karthikeyan Shanmugam, Kahini Wadhawan, Prasanna Sattigeri
ICML 2024 Boundary Exploration for Bayesian Optimization with Unknown Physical Constraints Yunsheng Tian, Ane Zuniga, Xinwei Zhang, Johannes P. Dürholt, Payel Das, Jie Chen, Wojciech Matusik, Mina Konakovic Lukovic
NeurIPSW 2024 Combining Domain and Alignment Vectors to Achieve Better Knowledge-Safety Trade-Offs in LLMs Megh Thakkar, Yash More, Quentin Fournier, Matthew Riemer, Pin-Yu Chen, Amal Zouaq, Payel Das, Sarath Chandar
ICMLW 2024 Generation Constraint Scaling Can Mitigate Hallucination Georgios Kollias, Payel Das, Subhajit Chaudhury
NeurIPSW 2024 Improving Structural Plausibility in 3D Molecule Generation via Property-Conditioned Training with Distorted Molecules Lucy Vost, Vijil Chenthamarakshan, Payel Das, Charlotte Deane
ICML 2024 Larimar: Large Language Models with Episodic Memory Control Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarathkrishna Swaminathan, Sihui Dai, Aurelie Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jiri Navratil, Soham Dan, Pin-Yu Chen
NeurIPSW 2024 MemReasoner: A Memory-Augmented LLM Architecture for Multi-Hop Reasoning Ching-Yun Ko, Sihui Dai, Payel Das, Georgios Kollias, Subhajit Chaudhury, Aurelie Lozano
NeurIPS 2024 Multi-Scale Representation Learning for Protein Fitness Prediction Zuobai Zhang, Pascal Notin, Yining Huang, Aurélie Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, Jian Tang
ICLRW 2024 Structure-Informed Protein Language Model Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang
ICML 2024 What Would Gauss Say About Representations? Probing Pretrained Image Models Using Synthetic Gaussian Benchmarks Ching-Yun Ko, Pin-Yu Chen, Payel Das, Jeet Mohapatra, Luca Daniel
NeurIPSW 2023 Characterizing Pre-Trained and Task-Adapted Molecular Representations Celia Cintas, Payel Das, Jarret Ross, Brian Belgodere, Girmaw Abebe Tadesse, Vijil Chenthamarakshan, Jannis Born, Skyler Speakman
NeurIPS 2023 Efficient Equivariant Transfer Learning from Pretrained Models Sourya Basu, Pulkit Katdare, Prasanna Sattigeri, Vijil Chenthamarakshan, Katherine Driggs-Campbell, Payel Das, Lav R. Varshney
ICLRW 2023 Enhancing Protein Language Model with Structure-Based Encoder and Pre-Training Zuobai Zhang, Minghao Xu, Aurelie Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang
AAAI 2023 Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models Sourya Basu, Prasanna Sattigeri, Karthikeyan Natesan Ramamurthy, Vijil Chenthamarakshan, Kush R. Varshney, Lav R. Varshney, Payel Das
ICML 2023 Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular Property Prediction Minghao Guo, Veronika Thost, Samuel W Song, Adithya Balachandran, Payel Das, Jie Chen, Wojciech Matusik
ICMLW 2023 On Robustness-Accuracy Characterization of Large Language Models Using Synthetic Datasets Ching-Yun Ko, Pin-Yu Chen, Payel Das, Yung-Sung Chuang, Luca Daniel
NeurIPS 2023 Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction Zuobai Zhang, Minghao Xu, Aurelie C. Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang
ICLR 2023 Protein Representation Learning by Geometric Structure Pretraining Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang
ICML 2023 Reprogramming Pretrained Language Models for Antibody Sequence Infilling Igor Melnyk, Vijil Chenthamarakshan, Pin-Yu Chen, Payel Das, Amit Dhurandhar, Inkit Padhi, Devleena Das
NeurIPS 2023 The Impact of Positional Encoding on Length Generalization in Transformers Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, Siva Reddy
ICML 2022 Biological Sequence Design with GFlowNets Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio
ECML-PKDD 2022 Cloud-Based Real-Time Molecular Screening Platform with MolFormer Brian Belgodere, Vijil Chenthamarakshan, Payel Das, Pierre L. Dognin, Toby Kurien, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young
ICLR 2022 Data-Efficient Graph Grammar Learning for Molecular Generation Minghao Guo, Veronika Thost, Beichen Li, Payel Das, Jie Chen, Wojciech Matusik
AAAI 2022 Fourier Representations for Black-Box Optimization over Categorical Variables Hamid Dadkhahi, Jesus Rios, Karthikeyan Shanmugam, Payel Das
ICMLW 2022 Protein Representation Learning by Geometric Structure Pretraining Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang
NeurIPSW 2022 SynBench: Task-Agnostic Benchmarking of Pretrained Representations Using Synthetic Data Ching-Yun Ko, Pin-Yu Chen, Jeet Mohapatra, Payel Das, Luca Daniel
IJCAI 2022 Towards Creativity Characterization of Generative Models via Group-Based Subset Scanning Celia Cintas, Payel Das, Brian Quanz, Girmaw Abebe Tadesse, Skyler Speakman, Pin-Yu Chen
ICML 2021 Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-Based Generative Model for Protein Design Yue Cao, Payel Das, Vijil Chenthamarakshan, Pin-Yu Chen, Igor Melnyk, Yang Shen
NeurIPSW 2021 Grapher: Multi-Stage Knowledge Graph Construction Using Pretrained Language Models Igor Melnyk, Pierre Dognin, Payel Das
NeurIPS 2021 Mean-Based Best Arm Identification in Stochastic Bandits Under Reward Contamination Arpan Mukherjee, Ali Tajer, Pin-Yu Chen, Payel Das
NeurIPS 2021 Predicting Deep Neural Network Generalization with Perturbation Response Curves Yair Schiff, Brian Quanz, Payel Das, Pin-Yu Chen
NeurIPSW 2021 Sample-Efficient Generation of Novel Photo-Acid Generator Molecules Using a Deep Generative Model Samuel C Hoffman, Vijil Chenthamarakshan, Dmitry Zubarev, Daniel P Sanders, Payel Das
AAAI 2021 Self-Progressing Robust Training Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das
NeurIPS 2020 A Decentralized Parallel Algorithm for Training Generative Adversarial Nets Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jarret Ross, Tianbao Yang, Payel Das
ICLR 2020 Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, Xue Lin
NeurIPSW 2020 Characterizing the Latent Space of Molecular Deep Generative Models with Persistent Homology Metrics Yair Schiff, Payel Das, Vijil Chenthamarakshan, Karthikeyan Natesan Ramamurthy
NeurIPS 2020 CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models Vijil Chenthamarakshan, Payel Das, Samuel Hoffman, Hendrik Strobelt, Inkit Padhi, Kar Wai Lim, Benjamin Hoover, Matteo Manica, Jannis Born, Teodoro Laino, Aleksandra Mojsilovic
ICLRW 2020 Nano-Material Configuration Design with Deep Surrogate Langevin Dynamics Thanh V. Nguyen, Youssef Mroueh, Samuel Hoffman, Payel Das, Pierre Dognin, Giuseppe Romano, Chinmay Hegde
NeurIPS 2020 Optimizing Mode Connectivity via Neuron Alignment Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, Rongjie Lai
IJCAI 2020 Toward a Neuro-Inspired Creative Decoder Payel Das, Brian Quanz, Pin-Yu Chen, Jae-wook Ahn, Dhruv Shah
ICLR 2020 Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang
ICLRW 2019 Interactive Visual Exploration of Latent Space (IVELS) for Peptide Auto-Encoder Model Selection Tom Sercu, Sebastian Gehrmann, Hendrik Strobelt, Payel Das, Inkit Padhi, Cicero Dos Santos, Kahini Wadhawan, Vijil Chenthamarakshan
NeurIPS 2018 Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, Payel Das