ML Anthology
Authors
Search
About
Dasarathy, Gautam
20 publications
TMLR
2025
Robust Model Selection of Gaussian Graphical Models
Abrar Zahin
,
Rajasekhar Anguluri
,
Lalitha Sankar
,
Oliver Kosut
,
Gautam Dasarathy
NeurIPS
2025
Statistically Valid Post-Deployment Monitoring Should Be Standard for AI-Based Digital Health
Pavel Dolin
,
Weizhi Li
,
Gautam Dasarathy
,
Visar Berisha
TMLR
2024
Active Sequential Two-Sample Testing
Weizhi Li
,
Prad Kadambi
,
Pouria Saidi
,
Karthikeyan Natesan Ramamurthy
,
Gautam Dasarathy
,
Visar Berisha
UAI
2022
A Label Efficient Two-Sample Test
Weizhi Li
,
Gautam Dasarathy
,
Karthikeyan Natesan Ramamurthy
,
Visar Berisha
NeurIPS
2022
Learning the Structure of Large Networked Systems Obeying Conservation Laws
Anirudh Rayas
,
Rajasekhar Anguluri
,
Gautam Dasarathy
NeurIPS
2022
Maximizing and Satisficing in Multi-Armed Bandits with Graph Information
Parth Thaker
,
Mohit Malu
,
Nikhil Rao
,
Gautam Dasarathy
AISTATS
2021
Graph Community Detection from Coarse Measurements: Recovery Conditions for the Coarsened Weighted Stochastic Block Model
Nafiseh Ghoroghchian
,
Gautam Dasarathy
,
Stark Draper
ECCV
2020
Differentiable Programming for Hyperspectral Unmixing Using a Physics-Based Dispersion Model
John Janiczek
,
Parth Thaker
,
Gautam Dasarathy
,
Christopher S. Edwards
,
Philip Christensen
,
Suren Jayasuriya
NeurIPS
2020
Finding the Homology of Decision Boundaries with Active Learning
Weizhi Li
,
Gautam Dasarathy
,
Karthikeyan Natesan Ramamurthy
,
Visar Berisha
AISTATS
2020
Regularization via Structural Label Smoothing
Weizhi Li
,
Gautam Dasarathy
,
Visar Berisha
AISTATS
2020
Thresholding Graph Bandits with GrAPL
Daniel LeJeune
,
Gautam Dasarathy
,
Richard Baraniuk
ICLR
2019
A Data-Driven and Distributed Approach to Sparse Signal Representation and Recovery
Ali Mousavi
,
Gautam Dasarathy
,
Richard G. Baraniuk
JAIR
2019
Multi-Fidelity Gaussian Process Bandit Optimisation
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Junier B. Oliva
,
Jeff G. Schneider
,
Barnabás Póczos
ICML
2018
MISSION: Ultra Large-Scale Feature Selection Using Count-Sketches
Amirali Aghazadeh
,
Ryan Spring
,
Daniel Lejeune
,
Gautam Dasarathy
,
Anshumali Shrivastava
,
Baraniuk
ICML
2017
Multi-Fidelity Bayesian Optimisation with Continuous Approximations
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Jeff Schneider
,
Barnabás Póczos
AISTATS
2016
Active Learning Algorithms for Graphical Model Selection
Gautam Dasarathy
,
Aarti Singh
,
Maria-Florina Balcan
,
Jong Hyuk Park
NeurIPS
2016
Gaussian Process Bandit Optimisation with Multi-Fidelity Evaluations
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Junier B Oliva
,
Jeff Schneider
,
Barnabas Poczos
NeurIPS
2016
The Multi-Fidelity Multi-Armed Bandit
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Barnabas Poczos
,
Jeff Schneider
COLT
2015
S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification
Gautam Dasarathy
,
Robert D. Nowak
,
Xiaojin Zhu
AISTATS
2011
Active Clustering: Robust and Efficient Hierarchical Clustering Using Adaptively Selected Similarities
Brian Eriksson
,
Gautam Dasarathy
,
Aarti Singh
,
Rob Nowak