Daskalakis, Constantinos

42 publications

COLT 2024 Is Efficient PAC Learning Possible with an Oracle That Responds "Yes" or "No"? Constantinos Daskalakis, Noah Golowich
NeurIPS 2024 Maximizing Utility in Multi-Agent Environments by Anticipating the Behavior of Other Learners Angelos Assos, Yuval Dagan, Constantinos Daskalakis
COLT 2024 Near-Optimal Learning and Planning in Separated Latent MDPs Fan Chen, Constantinos Daskalakis, Noah Golowich, Alexander Rakhlin
NeurIPS 2024 On Tractable $\Phi$-Equilibria in Non-Concave Games Yang Cai, Constantinos Daskalakis, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng
NeurIPS 2023 Consistent Diffusion Models: Mitigating Sampling Drift by Learning to Be Consistent Giannis Daras, Yuval Dagan, Alex Dimakis, Constantinos Daskalakis
COLT 2023 Learning and Testing Latent-Tree Ising Models Efficiently Vardis Kandiros, Constantinos Daskalakis, Yuval Dagan, Davin Choo
COLT 2023 Online Learning and Solving Infinite Games with an ERM Oracle Angelos Assos, Idan Attias, Yuval Dagan, Constantinos Daskalakis, Maxwell K. Fishelson
COLT 2023 STay-on-the-Ridge: Guaranteed Convergence to Local Minimax Equilibrium in Nonconvex-Nonconcave Games Constantinos Daskalakis, Noah Golowich, Stratis Skoulakis, Emmanouil Zampetakis
COLT 2023 The Complexity of Markov Equilibrium in Stochastic Games Constantinos Daskalakis, Noah Golowich, Kaiqing Zhang
COLT 2022 EM’s Convergence in Gaussian Latent Tree Models Yuval Dagan, Vardis Kandiros, Constantinos Daskalakis
AAAI 2022 How Good Are Low-Rank Approximations in Gaussian Process Regression? Constantinos Daskalakis, Petros Dellaportas, Aristeidis Panos
ICML 2022 Score-Guided Intermediate Level Optimization: Fast Langevin Mixing for Inverse Problems Giannis Daras, Yuval Dagan, Alex Dimakis, Constantinos Daskalakis
AISTATS 2021 Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization Jelena Diakonikolas, Constantinos Daskalakis, Michael I. Jordan
AISTATS 2021 GANs with Conditional Independence Graphs: On Subadditivity of Probability Divergences Mucong Ding, Constantinos Daskalakis, Soheil Feizi
COLT 2021 A Statistical Taylor Theorem and Extrapolation of Truncated Densities Constantinos Daskalakis, Vasilis Kontonis, Christos Tzamos, Emmanouil Zampetakis
NeurIPS 2021 Efficient Truncated Linear Regression with Unknown Noise Variance Constantinos Daskalakis, Patroklos Stefanou, Rui Yao, Emmanouil Zampetakis
NeurIPS 2021 Near-Optimal No-Regret Learning in General Games Constantinos Daskalakis, Maxwell Fishelson, Noah Golowich
AAAI 2021 Scalable Equilibrium Computation in Multi-Agent Influence Games on Networks Fotini Christia, Michael J. Curry, Constantinos Daskalakis, Erik D. Demaine, John P. Dickerson, MohammadTaghi Hajiaghayi, Adam Hesterberg, Marina Knittel, Aidan Milliff
ICML 2021 Statistical Estimation from Dependent Data Vardis Kandiros, Yuval Dagan, Nishanth Dikkala, Surbhi Goel, Constantinos Daskalakis
AISTATS 2020 A Theoretical and Practical Framework for Regression and Classification from Truncated Samples Andrew Ilyas, Emmanouil Zampetakis, Constantinos Daskalakis
NeurIPS 2020 Constant-Expansion Suffices for Compressed Sensing with Generative Priors Constantinos Daskalakis, Dhruv Rohatgi, Emmanouil Zampetakis
NeurIPS 2020 Independent Policy Gradient Methods for Competitive Reinforcement Learning Constantinos Daskalakis, Dylan J Foster, Noah Golowich
COLT 2020 Last Iterate Is Slower than Averaged Iterate in Smooth Convex-Concave Saddle Point Problems Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, Asuman Ozdaglar
AISTATS 2020 Logistic Regression with Peer-Group Effects via Inference in Higher-Order Ising Models Constantinos Daskalakis, Nishanth Dikkala, Ioannis Panageas
ICML 2020 SGD Learns One-Layer Networks in WGANs Qi Lei, Jason Lee, Alex Dimakis, Constantinos Daskalakis
NeurIPS 2020 Tight Last-Iterate Convergence Rates for No-Regret Learning in Multi-Player Games Noah Golowich, Sarath Pattathil, Constantinos Daskalakis
NeurIPS 2020 Truncated Linear Regression in High Dimensions Constantinos Daskalakis, Dhruv Rohatgi, Emmanouil Zampetakis
COLT 2019 Computationally and Statistically Efficient Truncated Regression Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, Manolis Zampetakis
COLT 2019 Learning from Weakly Dependent Data Under Dobrushin’s Condition Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti
NeurIPS 2018 HOGWILD!-Gibbs Can Be PanAccurate Constantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti
NeurIPS 2018 Learning and Testing Causal Models with Interventions Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, Saravanan Kandasamy
NeurIPS 2018 Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons Nima Anari, Constantinos Daskalakis, Wolfgang Maass, Christos Papadimitriou, Amin Saberi, Santosh Vempala
COLT 2018 Testing Symmetric Markov Chains from a Single Trajectory Constantinos Daskalakis, Nishanth Dikkala, Nick Gravin
NeurIPS 2018 The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization Constantinos Daskalakis, Ioannis Panageas
ICLR 2018 Training GANs with Optimism Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, Haoyang Zeng
NeurIPS 2017 Concentration of Multilinear Functions of the Ising Model with Applications to Network Data Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath
ICML 2017 Priv’IT: Private and Sample Efficient Identity Testing Bryan Cai, Constantinos Daskalakis, Gautam Kamath
COLT 2017 Square Hellinger Subadditivity for Bayesian Networks and Its Applications to Identity Testing Constantinos Daskalakis, Qinxuan Pan
COLT 2017 Ten Steps of EM Suffice for Mixtures of Two Gaussians Constantinos Daskalakis, Christos Tzamos, Manolis Zampetakis
NeurIPS 2015 Optimal Testing for Properties of Distributions Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath
COLT 2015 Optimum Statistical Estimation with Strategic Data Sources Yang Cai, Constantinos Daskalakis, Christos H. Papadimitriou
COLT 2014 Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians Constantinos Daskalakis, Gautam Kamath