ML Anthology
Authors
Search
About
de Bezenac, Emmanuel
21 publications
ICLR
2025
Learning a Neural Solver for Parametric PDEs to Enhance Physics-Informed Methods
Lise Le Boudec
,
Emmanuel de Bezenac
,
Louis Serrano
,
Ramon Daniel Regueiro-Espino
,
Yuan Yin
,
Patrick Gallinari
ICLR
2024
An Operator Preconditioning Perspective on Training in Physics-Informed Machine Learning
Tim De Ryck
,
Florent Bonnet
,
Siddhartha Mishra
,
Emmanuel de Bezenac
ICML
2024
Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains
Levi E. Lingsch
,
Mike Yan Michelis
,
Emmanuel De Bezenac
,
Sirani M. Perera
,
Robert K. Katzschmann
,
Siddhartha Mishra
ICLRW
2024
Learning Iterative Algorithms to Solve PDEs.
Lise Le Boudec
,
Emmanuel de Bezenac
,
Louis Serrano
,
Yuan Yin
,
Patrick Gallinari
NeurIPS
2024
Poseidon: Efficient Foundation Models for PDEs
Maximilian Herde
,
Bogdan Raonić
,
Tobias Rohner
,
Roger Käppeli
,
Roberto Molinaro
,
Emmanuel de Bézenac
,
Siddhartha Mishra
ICLRW
2023
Convolutional Neural Operators
Bogdan Raonic
,
Roberto Molinaro
,
Tobias Rohner
,
Siddhartha Mishra
,
Emmanuel de Bezenac
NeurIPS
2023
Convolutional Neural Operators for Robust and Accurate Learning of PDEs
Bogdan Raonic
,
Roberto Molinaro
,
Tim De Ryck
,
Tobias Rohner
,
Francesca Bartolucci
,
Rima Alaifari
,
Siddhartha Mishra
,
Emmanuel de Bézenac
NeurIPS
2023
Module-Wise Training of Neural Networks via the Minimizing Movement Scheme
Skander Karkar
,
Ibrahim Ayed
,
Emmanuel de Bézenac
,
Patrick Gallinari
NeurIPS
2023
Representation Equivalent Neural Operators: A Framework for Alias-Free Operator Learning
Francesca Bartolucci
,
Emmanuel de Bézenac
,
Bogdan Raonic
,
Roberto Molinaro
,
Siddhartha Mishra
,
Rima Alaifari
NeurIPS
2023
Unifying GANs and Score-Based Diffusion as Generative Particle Models
Jean-Yves Franceschi
,
Mike Gartrell
,
Ludovic Dos Santos
,
Thibaut Issenhuth
,
Emmanuel de Bézenac
,
Mickael Chen
,
Alain Rakotomamonjy
ICML
2022
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
,
Emmanuel De Bézenac
,
Ibrahim Ayed
,
Mickael Chen
,
Sylvain Lamprier
,
Patrick Gallinari
ICLR
2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift
Matthieu Kirchmeyer
,
Alain Rakotomamonjy
,
Emmanuel de Bezenac
,
Patrick Gallinari
MLJ
2022
Modelling Spatiotemporal Dynamics from Earth Observation Data with Neural Differential Equations
Ibrahim Ayed
,
Emmanuel de Bézenac
,
Arthur Pajot
,
Patrick Gallinari
ICLR
2021
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
,
Vincent Le Guen
,
Jérémie Dona
,
Emmanuel de Bezenac
,
Ibrahim Ayed
,
Nicolas Thome
,
Patrick Gallinari
ECML-PKDD
2021
CycleGAN Through the Lens of (Dynamical) Optimal Transport
Emmanuel de Bézenac
,
Ibrahim Ayed
,
Patrick Gallinari
NeurIPS
2021
LEADS: Learning Dynamical Systems That Generalize Across Environments
Yuan Yin
,
Ibrahim Ayed
,
Emmanuel de Bézenac
,
Nicolas Baskiotis
,
Patrick Gallinari
ECML-PKDD
2020
A Principle of Least Action for the Training of Neural Networks
Skander Karkar
,
Ibrahim Ayed
,
Emmanuel de Bézenac
,
Patrick Gallinari
NeurIPS
2020
Deep Rao-Blackwellised Particle Filters for Time Series Forecasting
Richard Kurle
,
Syama Sundar Rangapuram
,
Emmanuel de Bézenac
,
Stephan Günnemann
,
Jan Gasthaus
NeurIPS
2020
Normalizing Kalman Filters for Multivariate Time Series Analysis
Emmanuel de Bézenac
,
Syama Sundar Rangapuram
,
Konstantinos Benidis
,
Michael Bohlke-Schneider
,
Richard Kurle
,
Lorenzo Stella
,
Hilaf Hasson
,
Patrick Gallinari
,
Tim Januschowski
ICLR
2019
Unsupervised Adversarial Image Reconstruction
Arthur Pajot
,
Emmanuel de Bezenac
,
Patrick Gallinari
ICLR
2018
Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge
Emmanuel de Bezenac
,
Arthur Pajot
,
Patrick Gallinari