ML Anthology
Authors
Search
About
de Haan, Pim
20 publications
TMLR
2025
Does Equivariance Matter at Scale?
Johann Brehmer
,
Sönke Behrends
,
Pim De Haan
,
Taco Cohen
TMLR
2024
Deconfounding Imitation Learning with Variational Inference
Risto Vuorio
,
Pim De Haan
,
Johann Brehmer
,
Hanno Ackermann
,
Daniel Dijkman
,
Taco Cohen
NeurIPSW
2024
Does Equivariance Matter at Scale?
Johann Brehmer
,
Sönke Behrends
,
Pim De Haan
,
Taco Cohen
ICMLW
2024
Geometric Algebra Transformers for Large 3D Meshes via Cross-Attention
Julian Suk
,
Pim De Haan
,
Baris Imre
,
Jelmer M. Wolterink
NeurIPS
2024
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics
Jonas Spinner
,
Victor Bresó
,
Pim de Haan
,
Tilman Plehn
,
Jesse Thaler
,
Johann Brehmer
NeurIPS
2024
Noether's Razor: Learning Conserved Quantities
Tycho F. A. van der Ouderaa
,
Mark van der Wilk
,
Pim de Haan
NeurIPS
2023
EDGI: Equivariant Diffusion for Planning with Embodied Agents
Johann Brehmer
,
Joey Bose
,
Pim de Haan
,
Taco S Cohen
ICLRW
2023
EDGI: Equivariant Diffusion for Planning with Embodied Agents
Johann Brehmer
,
Joey Bose
,
Pim De Haan
,
Taco Cohen
NeurIPSW
2023
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers
Pim De Haan
,
Taco Cohen
,
Johann Brehmer
NeurIPSW
2023
FoMo Rewards: Can We Cast Foundation Models as Reward Functions?
Ekdeep Singh Lubana
,
Johann Brehmer
,
Pim De Haan
,
Taco Cohen
NeurIPS
2023
Geometric Algebra Transformer
Johann Brehmer
,
Pim de Haan
,
Sönke Behrends
,
Taco S Cohen
ICMLW
2023
Geometric Algebra Transformers
Johann Brehmer
,
Pim De Haan
,
Sönke Behrends
,
Taco Cohen
ICML
2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
,
Michele Invernizzi
,
Pim De Haan
,
Frank Noe
NeurIPSW
2022
Deconfounded Imitation Learning
Risto Vuorio
,
Pim De Haan
,
Johann Brehmer
,
Hanno Ackermann
,
Daniel Dijkman
,
Taco Cohen
NeurIPS
2022
Weakly Supervised Causal Representation Learning
Johann Brehmer
,
Pim de Haan
,
Phillip Lippe
,
Taco S Cohen
ICLRW
2022
Weakly Supervised Causal Representation Learning
Johann Brehmer
,
Pim De Haan
,
Phillip Lippe
,
Taco Cohen
ICLR
2021
Gauge Equivariant Mesh CNNs: Anisotropic Convolutions on Geometric Graphs
Pim De Haan
,
Maurice Weiler
,
Taco Cohen
,
Max Welling
NeurIPS
2020
Natural Graph Networks
Pim de Haan
,
Taco S Cohen
,
Max Welling
NeurIPS
2019
Causal Confusion in Imitation Learning
Pim de Haan
,
Dinesh Jayaraman
,
Sergey Levine
AISTATS
2019
Reparameterizing Distributions on Lie Groups
Luca Falorsi
,
Pim de Haan
,
Tim R. Davidson
,
Patrick Forré