ML Anthology
Authors
Search
About
De Sa, Christopher M
24 publications
NeurIPS
2023
Coneheads: Hierarchy Aware Attention
Albert Tseng
,
Tao Yu
,
Toni Liu
,
Christopher M De Sa
NeurIPS
2023
Coordinating Distributed Example Orders for Provably Accelerated Training
A. Feder Cooper
,
Wentao Guo
,
Duc Khiem Pham
,
Tiancheng Yuan
,
Charlie Ruan
,
Yucheng Lu
,
Christopher M De Sa
NeurIPS
2023
QuIP: 2-Bit Quantization of Large Language Models with Guarantees
Jerry Chee
,
Yaohui Cai
,
Volodymyr Kuleshov
,
Christopher M De Sa
NeurIPS
2023
Riemannian Residual Neural Networks
Isay Katsman
,
Eric Chen
,
Sidhanth Holalkere
,
Anna Asch
,
Aaron Lou
,
Ser Nam Lim
,
Christopher M De Sa
NeurIPS
2023
TART: A Plug-and-Play Transformer Module for Task-Agnostic Reasoning
Kush Bhatia
,
Avanika Narayan
,
Christopher M De Sa
,
Christopher Ré
NeurIPS
2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Christopher M De Sa
,
Satyen Kale
,
Jason Lee
,
Ayush Sekhari
,
Karthik Sridharan
NeurIPS
2022
GraB: Finding Provably Better Data Permutations than Random Reshuffling
Yucheng Lu
,
Wentao Guo
,
Christopher M De Sa
NeurIPS
2022
Model Preserving Compression for Neural Networks
Jerry Chee
,
Megan Flynn (née Renz)
,
Anil Damle
,
Christopher M De Sa
NeurIPS
2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning
Tao Yu
,
Yichi Zhang
,
Zhiru Zhang
,
Christopher M De Sa
NeurIPS
2021
Equivariant Manifold Flows
Isay Katsman
,
Aaron Lou
,
Derek Lim
,
Qingxuan Jiang
,
Ser Nam Lim
,
Christopher M De Sa
NeurIPS
2021
Hyperparameter Optimization Is Deceiving Us, and How to Stop It
A. Feder Cooper
,
Yucheng Lu
,
Jessica Forde
,
Christopher M De Sa
NeurIPS
2021
Representing Hyperbolic Space Accurately Using Multi-Component Floats
Tao Yu
,
Christopher M De Sa
NeurIPS
2020
Asymptotically Optimal Exact Minibatch Metropolis-Hastings
Ruqi Zhang
,
A. Feder Cooper
,
Christopher M De Sa
NeurIPS
2020
Neural Manifold Ordinary Differential Equations
Aaron Lou
,
Derek Lim
,
Isay Katsman
,
Leo Huang
,
Qingxuan Jiang
,
Ser Nam Lim
,
Christopher M De Sa
NeurIPS
2020
Random Reshuffling Is Not Always Better
Christopher M De Sa
NeurIPS
2019
Channel Gating Neural Networks
Weizhe Hua
,
Yuan Zhou
,
Christopher M De Sa
,
Zhiru Zhang
,
G. Edward Suh
NeurIPS
2019
Dimension-Free Bounds for Low-Precision Training
Zheng Li
,
Christopher M De Sa
NeurIPS
2019
Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models
Tao Yu
,
Christopher M De Sa
NeurIPS
2019
Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees
Ruqi Zhang
,
Christopher M De Sa
NeurIPS
2017
Gaussian Quadrature for Kernel Features
Tri Dao
,
Christopher M De Sa
,
Christopher Ré
NeurIPS
2016
Data Programming: Creating Large Training Sets, Quickly
Alexander J Ratner
,
Christopher M De Sa
,
Sen Wu
,
Daniel Selsam
,
Christopher Ré
NeurIPS
2016
Scan Order in Gibbs Sampling: Models in Which It Matters and Bounds on How Much
Bryan D He
,
Christopher M De Sa
,
Ioannis Mitliagkas
,
Christopher Ré
NeurIPS
2015
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width
Christopher M De Sa
,
Ce Zhang
,
Kunle Olukotun
,
Christopher Ré
NeurIPS
2015
Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms
Christopher M De Sa
,
Ce Zhang
,
Kunle Olukotun
,
Christopher Ré
,
Christopher Ré