De, Soham

12 publications

ICML 2024 Universality of Linear Recurrences Followed by Non-Linear Projections: Finite-Width Guarantees and Benefits of Complex Eigenvalues Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, Samuel L Smith
ICML 2023 Resurrecting Recurrent Neural Networks for Long Sequences Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, Soham De
ICLR 2021 Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets Andrew Brock, Soham De, Samuel L Smith
ICML 2021 High-Performance Large-Scale Image Recognition Without Normalization Andy Brock, Soham De, Samuel L Smith, Karen Simonyan
ICLR 2021 On the Origin of Implicit Regularization in Stochastic Gradient Descent Samuel L Smith, Benoit Dherin, David Barrett, Soham De
NeurIPS 2020 Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks Soham De, Sam Smith
ICML 2020 On the Generalization Benefit of Noise in Stochastic Gradient Descent Samuel Smith, Erich Elsen, Soham De
ICML 2020 The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent Karthik Abinav Sankararaman, Soham De, Zheng Xu, W. Ronny Huang, Tom Goldstein
NeurIPS 2019 Adversarial Robustness Through Local Linearization Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, Pushmeet Kohli
UAI 2019 Efficient Neural Network Verification with Exactness Characterization Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Chongli Qin, Soham De, Pushmeet Kohli
AISTATS 2017 Automated Inference with Adaptive Batches Soham De, Abhay Kumar Yadav, David W. Jacobs, Tom Goldstein
NeurIPS 2017 Training Quantized Nets: A Deeper Understanding Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein