ML Anthology
Authors
Search
About
De Vito, Ernesto
13 publications
NeurIPS
2025
Computational Efficiency Under Covariate Shift in Kernel Ridge Regression
Andrea Della Vecchia
,
Arnaud Mavakala Watusadisi
,
Ernesto De Vito
,
Lorenzo Rosasco
JMLR
2025
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
,
Nicolas Schreuder
,
Ernesto De Vito
,
Lorenzo Rosasco
JMLR
2024
The Nyström Method for Convex Loss Functions
Andrea Della Vecchia
,
Ernesto De Vito
,
Jaouad Mourtada
,
Lorenzo Rosasco
AISTATS
2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
,
Luigi Carratino
,
Ernesto De Vito
,
Lorenzo Rosasco
AISTATS
2022
Mean Nyström Embeddings for Adaptive Compressive Learning
Antoine Chatalic
,
Luigi Carratino
,
Ernesto De Vito
,
Lorenzo Rosasco
ICML
2022
Multiclass Learning with Margin: Exponential Rates with No Bias-Variance Trade-Off
Stefano Vigogna
,
Giacomo Meanti
,
Ernesto De Vito
,
Lorenzo Rosasco
AISTATS
2021
Regularized ERM on Random Subspaces
Andrea Della Vecchia
,
Jaouad Mourtada
,
Ernesto De Vito
,
Lorenzo Rosasco
NeurIPS
2021
Learning the Optimal Tikhonov Regularizer for Inverse Problems
Giovanni S Alberti
,
Ernesto De Vito
,
Matti Lassas
,
Luca Ratti
,
Matteo Santacesaria
JMLR
2010
On Learning with Integral Operators
Lorenzo Rosasco
,
Mikhail Belkin
,
Ernesto De Vito
COLT
2009
A Note on Learning with Integral Operators
Lorenzo Rosasco
,
Mikhail Belkin
,
Ernesto De Vito
JMLR
2005
Learning from Examples as an Inverse Problem
Ernesto De Vito
,
Lorenzo Rosasco
,
Andrea Caponnetto
,
Umberto De Giovannini
,
Francesca Odone
NeCo
2004
Are Loss Functions All the Same?
Lorenzo Rosasco
,
Ernesto De Vito
,
Andrea Caponnetto
,
Michele Piana
,
Alessandro Verri
JMLR
2004
Some Properties of Regularized Kernel Methods
Ernesto De Vito
,
Lorenzo Rosasco
,
Andrea Caponnetto
,
Michele Piana
,
Alessandro Verri