ML Anthology
Authors
Search
About
Deisenroth, Marc
21 publications
AISTATS
2024
A Unifying Variational Framework for Gaussian Process Motion Planning
Lucas C. Cosier
,
Rares Iordan
,
Sicelukwanda N. T. Zwane
,
Giovanni Franzese
,
James T. Wilson
,
Marc Deisenroth
,
Alexander Terenin
,
Yasemin Bekiroglu
NeurIPS
2023
Thin and Deep Gaussian Processes
Daniel Augusto de Souza
,
Alexander Nikitin
,
St John
,
Magnus Ross
,
Mauricio A Álvarez
,
Marc Deisenroth
,
João Paulo Gomes
,
Diego Mesquita
,
César Lincoln Mattos
AISTATS
2021
Aligning Time Series on Incomparable Spaces
Samuel Cohen
,
Giulia Luise
,
Alexander Terenin
,
Brandon Amos
,
Marc Deisenroth
AISTATS
2021
Learning Contact Dynamics Using Physically Structured Neural Networks
Andreas Hochlehnert
,
Alexander Terenin
,
Steindor Saemundsson
,
Marc Deisenroth
AISTATS
2021
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
,
Iskander Azangulov
,
Alexander Terenin
,
Peter Mostowsky
,
Marc Deisenroth
,
Nicolas Durrande
NeurIPS
2021
Vector-Valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
Michael Hutchinson
,
Alexander Terenin
,
Viacheslav Borovitskiy
,
So Takao
,
Yee W. Teh
,
Marc Deisenroth
ICML
2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James Wilson
,
Viacheslav Borovitskiy
,
Alexander Terenin
,
Peter Mostowsky
,
Marc Deisenroth
ICML
2020
Healing Products of Gaussian Process Experts
Samuel Cohen
,
Rendani Mbuvha
,
Tshilidzi Marwala
,
Marc Deisenroth
NeurIPS
2020
Matérn Gaussian Processes on Riemannian Manifolds
Viacheslav Borovitskiy
,
Alexander Terenin
,
Peter Mostowsky
,
Marc Deisenroth
NeurIPS
2020
Probabilistic Active Meta-Learning
Jean Kaddour
,
Steindor Saemundsson
,
Marc Deisenroth
AISTATS
2020
Variational Integrator Networks for Physically Structured Embeddings
Steindor Saemundsson
,
Alexander Terenin
,
Katja Hofmann
,
Marc Deisenroth
ICML
2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
,
Vincent Dutordoir
,
James Hensman
,
Marc Deisenroth
ICML
2018
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches
Simon Olofsson
,
Marc Deisenroth
,
Ruth Misener
NeurIPS
2018
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
,
Hugh Salimbeni
,
James Hensman
,
Marc Deisenroth
NeurIPS
2018
Maximizing Acquisition Functions for Bayesian Optimization
James Wilson
,
Frank Hutter
,
Marc Deisenroth
NeurIPS
2018
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
,
Ching-An Cheng
,
Byron Boots
,
Marc Deisenroth
NeurIPS
2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
,
Marc Deisenroth
NeurIPS
2017
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
,
Tom Nicholson
,
Marc Deisenroth
,
James Hensman
ICML
2015
Distributed Gaussian Processes
Marc Deisenroth
,
Jun Wei Ng
NeurIPS
2012
Expectation Propagation in Gaussian Process Dynamical Systems
Marc Deisenroth
,
Shakir Mohamed
AISTATS
2010
State-Space Inference and Learning with Gaussian Processes
Ryan Turner
,
Marc Deisenroth
,
Carl Rasmussen