ML Anthology
Authors
Search
About
Demeester, Thomas
16 publications
ICLR
2025
Dynamic Negative Guidance of Diffusion Models
Felix Koulischer
,
Johannes Deleu
,
Gabriel Raya
,
Thomas Demeester
,
Luca Ambrogioni
NeurIPS
2025
Feedback Guidance of Diffusion Models
Felix Koulischer
,
Florian Handke
,
Johannes Deleu
,
Thomas Demeester
,
Luca Ambrogioni
NeurIPSW
2024
Anchored Optimization and Contrastive Revisions: Addressing Reward Hacking in Alignment
Karel D'Oosterlinck
,
Winnie Xu
,
Chris Develder
,
Thomas Demeester
,
Amanpreet Singh
,
Christopher Potts
,
Douwe Kiela
,
Shikib Mehri
NeurIPS
2024
Debiasing Synthetic Data Generated by Deep Generative Models
Alexander Decruyenaere
,
Heidelinde Dehaene
,
Paloma Rabaey
,
Christiaan Polet
,
Johan Decruyenaere
,
Thomas Demeester
,
Stijn Vansteelandt
NeurIPSW
2024
Dynamic Negative Guidance of Diffusion Models: Towards Immediate Content Removal
Felix Koulischer
,
Johannes Deleu
,
Gabriel Raya
,
Thomas Demeester
,
Luca Ambrogioni
NeurIPSW
2024
From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding
Henri Arno
,
Paloma Rabaey
,
Thomas Demeester
UAI
2024
The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data
Alexander Decruyenaere
,
Heidelinde Dehaene
,
Paloma Rabaey
,
Christiaan Polet
,
Johan Decruyenaere
,
Stijn Vansteelandt
,
Thomas Demeester
NeurIPSW
2023
Accelerating Hierarchical Associative Memory: A Deep Equilibrium Approach
Cédric Goemaere
,
Johannes Deleu
,
Thomas Demeester
NeurIPSW
2023
Exploring the Temperature-Dependent Phase Transition in Modern Hopfield Networks
Felix Koulischer
,
Cédric Goemaere
,
Tom Van Der Meersch
,
Johannes Deleu
,
Thomas Demeester
NeurIPSW
2023
Synthetic Data: Can We Trust Statistical Estimators?
Alexander Decruyenaere
,
Heidelinde Dehaene
,
Paloma Rabaey
,
Christiaan Polet
,
Johan Decruyenaere
,
Stijn Vansteelandt
,
Thomas Demeester
NeurIPSW
2023
Training a Hopfield Variational Autoencoder with Equilibrium Propagation
Tom Van Der Meersch
,
Johannes Deleu
,
Thomas Demeester
NeurIPSW
2022
Neural Bayesian Network Understudy
Paloma Rabaey
,
Cedric De Boom
,
Thomas Demeester
NeurIPS
2022
TempEL: Linking Dynamically Evolving and Newly Emerging Entities
Klim Zaporojets
,
Lucie-Aimée Kaffee
,
Johannes Deleu
,
Thomas Demeester
,
Chris Develder
,
Isabelle Augenstein
AAAI
2020
System Identification with Time-Aware Neural Sequence Models
Thomas Demeester
NeurIPS
2018
DeepProbLog: Neural Probabilistic Logic Programming
Robin Manhaeve
,
Sebastijan Dumancic
,
Angelika Kimmig
,
Thomas Demeester
,
Luc De Raedt
UAI
2017
Adversarial Sets for Regularising Neural Link Predictors
Pasquale Minervini
,
Thomas Demeester
,
Tim Rocktäschel
,
Sebastian Riedel